Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-Located Workshops
  • Program
    • At a Glance
    • Technical Sessions
    • Poster Session
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
    • WiPs
  • Participate
    • Call for Papers
      • Important Dates
      • Symposium Organizers
      • Symposium Topics
      • Refereed Papers
      • Shadow PC
      • Symposium Activities
      • Submitting Papers
    • Instructions for Participants
  • Sponsorship
  • About
    • Symposium Organizers
    • Services
    • Questions
    • Help Promote!
    • Past Symposia
  • Home
  • Attend
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-Located Workshops
  • Program
  • Activities
  • Participate
    • Call for Papers
    • Instructions for Participants
  • Sponsorship
  • About
    • Symposium Organizers
    • Services
    • Questions
    • Help Promote!
    • Past Symposia

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX Security '16 button

Get more
Help Promote graphics!

connect with usenix


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Finding Unknown Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale
Tweet

connect with us

Finding Unknown Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale

Authors: 

Kai Chen, Chinese Academy of Sciences and Indiana University; Peng Wang, Yeonjoon Lee, Xiaofeng Wang, and Nan Zhang, Indiana University; Heqing Huang, The Pennsylvania State University; Wei Zou, Chinese Academy of Sciences; Peng Liu, The Pennsylvania State University

Abstract: 

An app market’s vetting process is expected to be scalable and effective. However, today’s vetting mechanisms are slow and less capable of catching new threats. In our research, we found that a more powerful solution can be found by exploiting the way Android malware is constructed and disseminated, which is typically through repackaging legitimate apps with similar malicious components. As a result, such attack payloads often stand out from those of the same repackaging origin and also show up in the apps not supposed to relate to each other.

Based upon this observation, we developed a new technique, called MassVet, for vetting apps at a massive scale, without knowing what malware looks like and how it behaves. Unlike existing detection mechanisms, which often utilize heavyweight program analysis techniques, our approach simply compares a submitted app with all those already on a market, focusing on the difference between those sharing a similar UI structure (indicating a possible repackaging relation), and the commonality among those seemingly unrelated. Once public libraries and other legitimate code reuse are removed, such diff/common program components become highly suspicious. In our research, we built this “DiffCom” analysis on top of an efficient similarity comparison algorithm, which maps the salient features of an app’s UI structure or a method’s control-flow graph to a value for a fast comparison. We implemented MassVet over a stream processing engine and evaluated it nearly 1.2 million apps from 33 app markets around the world, the scale of Google Play. Our study shows that the technique can vet an app within 10 seconds at a low false detection rate. Also, it outperformed all 54 scanners in VirusTotal (NOD32, Symantec, McAfee, etc.) in terms of detection coverage, capturing over a hundred thousand malicious apps, including over 20 likely zero-day malware and those installed millions of times. A close look at these apps brings to light intriguing new observations: e.g., Google’s detection strategy and malware authors’ countermoves that cause the mysterious disappearance and reappearance of some Google Play apps.

Kai Chen, Chinese Academy of Sciences and Indiana University

Peng Wang, Indiana University

Yeonjoon Lee, Indiana University

Xiaofeng Wang, Indiana University

Nan Zhang, Indiana University

Heqing Huang, The Pennsylvania State University

Wei Zou, Chinese Academy of Sciences

Peng Liu, The Pennsylvania State University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Kai Chen PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the USENIX Security '15 videos sponsored by Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us