Biblio

Export 8 results:
Filters: Author is Quanlu Zhang  [Clear All Filters]
2024
Wang L, Ma L, Cao S, Zhang Q, Xue J, Shi Y, Zheng N, Miao Z, Yang F, Cao T et al..  2024.  Ladder: Enabling Efficient Low-Precision Deep Learning Computing through Hardware-aware Tensor Transformation. 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24). :307--323.
Lin Z, Miao Y, Zhang Q, Yang F, Zhu Y, Li C, Maleki S, Cao X, Shang N, Yang Y et al..  2024.  nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training. 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24). :347--363.
2022
Zheng N, Lin B, Zhang Q, Ma L, Yang Y, Yang F, Wang Y, Yang M, Zhou L.  2022.  SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute. 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). :213--232.
2020
Liang C-JMike, Xue H, Yang M, Zhou L, Zhu L, Li ZLucis, Wang Z, Chen Q, Zhang Q, Liu C et al..  2020.  AutoSys: The Design and Operation of Learning-Augmented Systems. 2020 USENIX Annual Technical Conference (USENIX ATC 20). :323--336.
Zhao H, Han Z, Yang Z, Zhang Q, Yang F, Zhou L, Yang M, Lau FCM, Wang Y, Xiong Y et al..  2020.  HiveD: Sharing a GPU Cluster for Deep Learning with Guarantees. 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). :515--532.
Zhang Q, Han Z, Yang F, Zhang Y, Liu Z, Yang M, Zhou L.  2020.  Retiarii: A Deep Learning Exploratory-Training Framework. 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). :919--936.
2018
Xiao W, Bhardwaj R, Ramjee R, Sivathanu M, Kwatra N, Han Z, Patel P, Peng X, Zhao H, Zhang Q et al..  2018.  Gandiva: Introspective Cluster Scheduling for Deep Learning. 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). :595--610.
Xiao H, Li Z, Zhai E, Xu T, Li Y, Liu Y, Zhang Q, Liu Y.  2018.  Towards Web-based Delta Synchronization for Cloud Storage Services. 16th USENIX Conference on File and Storage Technologies (FAST 18). :155-168.