Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session and Happy Hour
  • Program
    • At a Glance
    • Technical Sessions
  • Sponsorship
  • Participate
    • Instructions for Participants
    • Call for Papers
    • Call for Posters
  • About
    • Organizers
    • Help Promote
    • Questions
    • Past Symposia
  • Home
  • Attend
  • Activities
  • Program
  • Sponsorship
  • Participate
  • About

sponsors

Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

help promote

NSDI '16 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Maglev: A Fast and Reliable Software Network Load Balancer
Tweet

connect with us

Maglev: A Fast and Reliable Software Network Load Balancer

Authors: 

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, and Bin Cheyney, Google Inc.; Wentao Shang, University of California, Los Angeles; Jinnah Dylan Hosein, SpaceX

This paper is part of the Operational Systems Track

Abstract: 

Maglev is Google’s network load balancer. It is a large distributed software system that runs on commodity Linux servers. Unlike traditional hardware network load balancers, it does not require a specialized physical rack deployment, and its capacity can be easily adjusted by adding or removing servers. Network routers distribute packets evenly to the Maglev machines via Equal Cost Multipath (ECMP); each Maglev machine then matches the packets to their corresponding services and spreads them evenly to the service endpoints. To accommodate high and ever-increasing traffic, Maglev is specifically optimized for packet processing performance. A single Maglev machine is able to saturate a 10Gbps link with small packets. Maglev is also equipped with consistent hashing and connection tracking features, to minimize the negative impact of unexpected faults and failures on connection-oriented protocols. Maglev has been serving Google’s traffic since 2008. It has sustained the rapid global growth of Google services, and it also provides network load balancing for Google Cloud Platform.

Daniel E. Eisenbud, Google Inc.

Cheng Yi, Google Inc.

Carlo Contavalli, Google Inc.

Cody Smith, Google Inc.

Roman Kononov, Google Inc.

Eric Mann-Hielscher, Google Inc.

Ardas Cilingiroglu, Google Inc.

Bin Cheyney, Google Inc.

Wentao Shang, University of California, Los Angeles

Jinnah Dylan Hosein, Space X

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Eisenbud PDF
Eisenbud PDF (updated 3-8-16)
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us