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Abstract

Maglev is Google’s network load balancer. It is a

large distributed software system that runs on commodity

Linux servers. Unlike traditional hardware network load

balancers, it does not require a specialized physical rack

deployment, and its capacity can be easily adjusted by

adding or removing servers. Network routers distribute

packets evenly to the Maglev machines via Equal Cost

Multipath (ECMP); each Maglev machine then matches

the packets to their corresponding services and spreads

them evenly to the service endpoints. To accommodate

high and ever-increasing traffic, Maglev is specifically

optimized for packet processing performance. A single

Maglev machine is able to saturate a 10Gbps link with

small packets. Maglev is also equipped with consistent

hashing and connection tracking features, to minimize

the negative impact of unexpected faults and failures on

connection-oriented protocols. Maglev has been serving

Google’s traffic since 2008. It has sustained the rapid

global growth of Google services, and it also provides

network load balancing for Google Cloud Platform.

1 Introduction

Google is a major source of global Internet traffic [29,

30]. It provides hundreds of user-facing services, in ad-

dition to many more services hosted on the rapidly grow-

ing Cloud Platform [6]. Popular Google services such as

Google Search and Gmail receive millions of queries per

second from around the globe, putting tremendous de-

mand on the underlying serving infrastructure.

To meet such high demand at low latency, a Google

service is hosted on a number of servers located in mul-

tiple clusters around the world. Within each cluster, it

is essential to distribute traffic load evenly across these

servers in order to utilize resources efficiently so that no

single server gets overloaded. As a result, network load

∗Work was done while at Google.

Figure 1: Hardware load balancer and Maglev.

balancers form a critical component of Google’s produc-

tion network infrastructure.

A network load balancer is typically composed of

multiple devices logically located between routers and

service endpoints (generally TCP or UDP servers), as

shown in Figure 1. The load balancer is responsible for

matching each packet to its corresponding service and

forwarding it to one of that service’s endpoints.

Network load balancers have traditionally been imple-

mented as dedicated hardware devices [1, 2, 3, 5, 9, 12,

13], an approach that has several limitations. First, their

scalability is generally constrained by the maximum ca-

pacity of a single unit, making it impossible to keep up

with Google’s traffic growth. Second, they do not meet

Google’s requirements for high availability. Though of-

ten deployed in pairs to avoid single points of failure,

they only provide 1+1 redundancy. Third, they lack the

flexibility and programmability needed for quick itera-

tion, as it is usually difficult, if not impossible, to modify

a hardware load balancer. Fourth, they are costly to up-

grade. Augmenting the capacity of a hardware load bal-

ancer usually involves purchasing new hardware as well

as physically deploying it. Because of all these limita-

tions, we investigated and pursued alternative solutions.

With all services hosted in clusters full of commodity

servers, we can instead build the network load balancer

as a distributed software system running on these servers.

A software load balancing system has many advantages
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balancers form a critical component of Google’s produc-

tion network infrastructure.

A network load balancer is typically composed of

multiple devices logically located between routers and

service endpoints (generally TCP or UDP servers), as

shown in Figure 1. The load balancer is responsible for

matching each packet to its corresponding service and

forwarding it to one of that service’s endpoints.

Network load balancers have traditionally been imple-

mented as dedicated hardware devices [1, 2, 3, 5, 9, 12,

13], an approach that has several limitations. First, their

scalability is generally constrained by the maximum ca-

pacity of a single unit, making it impossible to keep up

with Google’s traffic growth. Second, they do not meet

Google’s requirements for high availability. Though of-

ten deployed in pairs to avoid single points of failure,

they only provide 1+1 redundancy. Third, they lack the

flexibility and programmability needed for quick itera-

tion, as it is usually difficult, if not impossible, to modify

a hardware load balancer. Fourth, they are costly to up-

grade. Augmenting the capacity of a hardware load bal-

ancer usually involves purchasing new hardware as well

as physically deploying it. Because of all these limita-

tions, we investigated and pursued alternative solutions.

With all services hosted in clusters full of commodity

servers, we can instead build the network load balancer

as a distributed software system running on these servers.

A software load balancing system has many advantages
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over its hardware counterpart. We can address scalabil-

ity by adopting the scale-out model, where the capac-

ity of the load balancer can be improved by increasing

the number of machines in the system: through ECMP

forwarding, traffic can be evenly distributed across all

machines. Availability and reliability are enhanced as

the system provides N+1 redundancy. By controlling

the entire system ourselves, we can quickly add, test,

and deploy new features. Meanwhile, deployment of the

load balancers themselves is greatly simplified: the sys-

tem uses only existing servers inside the clusters. We

can also divide services between multiple shards of load

balancers in the same cluster in order to achieve perfor-

mance isolation.

Despite all the benefits, the design and implementation

of a software network load balancer are highly complex

and challenging. First, each individual machine in the

system must provide high throughput. Let N be the num-

ber of machines in the system and T be the maximum

throughput of a single machine. The maximum capac-

ity of the system is bounded by N×T . If T is not high

enough, it will be uneconomical for the system to pro-

vide enough capacity for all services [22]. The system as

a whole must also provide connection persistence: pack-

ets belonging to the same connection should always be

directed to the same service endpoint. This ensures qual-

ity of service as clusters are very dynamic and failures

are quite common [23, 40].

This paper presents Maglev, a fast and reliable soft-

ware network load balancing system. Maglev has been a

critical component of Google’s frontend serving infras-

tructure since 2008, and currently serves almost all of

Google’s incoming user traffic. By exploiting recent ad-

vances in high-speed server networking techniques [18,

41, 35, 31], each Maglev machine is able to achieve line-

rate throughput with small packets. Through consistent

hashing and connection tracking, Maglev provides reli-

able packet delivery despite frequent changes and unex-

pected failures. While some of the techniques described

in this paper have existed for years, this paper shows how

to build an operational system using these techniques.

The major contributions of this paper are to: 1) present

the design and implementation of Maglev, 2) share ex-

periences of operating Maglev at a global scale, and 3)

demonstrate the capability of Maglev through extensive

evaluations.

2 System Overview

This section provides an overview of how Maglev works

as a network load balancer. We give a brief introduction

to Google’s frontend serving architecture, followed by a

description of how the Maglev system is configured.

Figure 2: Maglev packet flow.

2.1 Frontend Serving Architecture

Maglev is deployed in Google’s frontend-serving loca-

tions, including clusters of varying sizes. For simplicity,

we only focus on the setup in the smaller clusters in this

paper, and briefly describe the larger cluster setup below.

Figure 2 shows an overview of Google’s frontend serving

architecture in the small cluster setup.

Every Google service has one or more Virtual IP ad-

dresses (VIPs). A VIP is different from a physical IP in

that it is not assigned to a specific network interface, but

rather served by multiple service endpoints behind Ma-

glev. Maglev associates each VIP with a set of service

endpoints and announces it to the router over BGP; the

router in turn announces the VIP to Google’s backbone.

Aggregations of the VIP networks are announced to the

Internet to make them globally accessible. Maglev han-

dles both IPv4 and IPv6 traffic, and all the discussion

below applies equally to both.

When a user tries to access a Google service served on

www.google.com, her browser first issues a DNS query,

which gets a response (possibly cached) from one of

Google’s authoritative DNS servers. The DNS server as-

signs the user to a nearby frontend location taking into

account both her geolocation and the current load at each

location, and returns a VIP belonging to the selected lo-

cation in response [16]. The browser will then try to es-

tablish a new connection with the VIP.

When the router receives a VIP packet, it forwards

the packet to one of the Maglev machines in the clus-

ter through ECMP, since all Maglev machines announce

the VIP with the same cost. When the Maglev machine

receives the packet, it selects an endpoint from the set

of service endpoints associated with the VIP, and encap-

sulates the packet using Generic Routing Encapsulation

(GRE) with the outer IP header destined to the endpoint.

When the packet arrives at the selected service end-

point, it is decapsulated and consumed. The response,

when ready, is put into an IP packet with the source ad-

dress being the VIP and the destination address being

2
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Figure 3: Maglev config (BP stands for backend pool).

the IP of the user. We use Direct Server Return (DSR) to

send responses directly to the router so that Maglev does

not need to handle returning packets, which are typically

larger in size. This paper focuses on the load balancing

of incoming user traffic. The implementation of DSR is

out of the scope of this paper.

The setup for large clusters is more complicated: to

build clusters at scale, we want to avoid the need to

placeMaglev machines in the same layer-2 domain as the

router, so hardware encapsulators are deployed behind

the router, which tunnel packets from routers to Maglev

machines.

2.2 Maglev Configuration

As described in the previous subsection, Maglev is re-

sponsible for announcingVIPs to the router and forward-

ing VIP traffic to the service endpoints. Therefore, each

Maglev machine contains a controller and a forwarder

as depicted in Figure 3. Both the controller and the for-

warder learn the VIPs to be served from configuration

objects, which are either read from files or received from

external systems through RPC.

On each Maglev machine, the controller periodically

checks the health status of the forwarder. Depending on

the results, the controller decides whether to announce or

withdraw all the VIPs via BGP. This ensures the router

only forwards packets to healthy Maglev machines.

All VIP packets received by a Maglev machine are

handled by the forwarder. At the forwarder, each VIP

is configured with one or more backend pools. Unless

otherwise specified, the backends for Maglev are service

endpoints. A backend pool may contain the physical IP

addresses of the service endpoints; it may also recur-

Figure 4: Maglev forwarder structure.

sively contain other backend pools, so that a frequently-

used set of backends does not need to be specified repeat-

edly. Each backend pool, depending on its specific re-

quirements, is associated with one or more health check-

ing methods with which all its backends are verified;

packets will only be forwarded to the healthy backends.

As the same server may be included in more than one

backend pool, health checks are deduplicated by IP ad-

dresses to avoid extra overhead.

The forwarder’s config manager is responsible for

parsing and validating config objects before altering the

forwarding behavior. All config updates are committed

atomically. Configuration of Maglev machines within

the same cluster may become temporarily out of sync

due to delays in config push or health checks. However,

consistent hashing will make connection flaps between

Maglevs with similar backend pools mostly succeed even

during these very short windows.

It is possible to deploy multiple shards of Maglevs in

the same cluster. Different Maglev shards are configured

differently and serve different sets of VIPs. Sharding is

useful for providing performance isolation and ensuring

quality of service. It is also good for testing new features

without interfering with regular traffic. For simplicity,

we assume one shard per cluster in this paper.

3 Forwarder Design and Implementation

The forwarder is a critical component of Maglev, as it

needs to handle a huge number of packets quickly and re-

liably. This section explains the design and implementa-

tion details of the key modules of the Maglev forwarder,

as well as the rationale behind the design.

3.1 Overall Structure

Figure 4 illustrates the overall structure of the Maglev

forwarder. The forwarder receives packets from the

3
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NIC (Network Interface Card), rewrites themwith proper

GRE/IP headers and then sends them back to the NIC.

The Linux kernel is not involved in this process.

Packets received by the NIC are first processed by the

steering module of the forwarder, which calculates the 5-

tuple hash1 of the packets and assigns them to different

receiving queues depending on the hash value. Each re-

ceiving queue is attached to a packet rewriter thread. The

packet thread first tries to match each packet to a con-

figured VIP. This step filters out unwanted packets not

targeting any VIP. Then it recomputes the 5-tuple hash

of the packet and looks up the hash value in the connec-

tion tracking table (covered in Section 3.3). We do not

reuse the hash value from the steering module to avoid

cross-thread synchronization.

The connection table stores backend selection results

for recent connections. If a match is found and the se-

lected backend is still healthy, the result is simply reused.

Otherwise the thread consults the consistent hashing

module (covered in Section 3.4) and selects a new back-

end for the packet; it also adds an entry to the connection

table for future packets with the same 5-tuple. A packet

is dropped if no backend is available. The forwarder

maintains one connection table per packet thread to avoid

access contention. After a backend is selected, the packet

thread encapsulates the packet with proper GRE/IP head-

ers and sends it to the attached transmission queue. The

muxing module then polls all transmission queues and

passes the packets to the NIC.

The steering module performs 5-tuple hashing instead

of round-robin scheduling for two reasons. First, it helps

lower the probability of packet reordering within a con-

nection caused by varying processing speed of different

packet threads. Second, with connection tracking, the

forwarder only needs to perform backend selection once

for each connection, saving clock cycles and eliminat-

ing the possibility of differing backend selection results

caused by race conditions with backend health updates.

In the rare cases where a given receiving queue fills up,

the steering module falls back to round-robin scheduling

and spreads packets to other available queues. This fall-

back mechanism is especially effective at handling large

floods of packets with the same 5-tuple.

3.2 Fast Packet Processing

The Maglev forwarder needs to process packets as fast

as possible in order to cost-effectively scale the serv-

ing capacity to the demands of Google’s traffic. We

engineered it to forward packets at line rate – typically

10Gbps in Google’s clusters today. This translates to

813Kpps (packets per second) for 1500-byte IP packets.

1The 5-tuple of a packet refers to the source IP, source port, desti-

nation IP, destination port and IP protocol number.

Figure 5: Packet movement into and out of the forwarder.

However, our requirements are much more stringent: we

must handle very small packets effectively because in-

coming requests are typically small in size. Assuming IP

packet size is 100 bytes on average, the forwarder must

be able to process packets at 9.06Mpps. This subsection

describes the key techniques we employed to reach and

exceed this packet processing speed.

Maglev is a userspace application running on com-

modity Linux servers. Since the Linux kernel network

stack is rather computationally expensive, and Maglev

doesn’t require any of the Linux stack’s features, it is

desirable to make Maglev bypass the kernel entirely for

packet processing. With proper support from the NIC

hardware, we have developed a mechanism to move

packets between the forwarder and the NIC without any

involvement of the kernel, as shown in Figure 5. When

Maglev is started, it pre-allocates a packet pool that is

shared between the NIC and the forwarder. Both the

steering and muxing modules maintain a ring queue of

pointers pointing to packets in the packet pool.

Both the steering and muxing modules maintain three

pointers to the rings. At the receiving side, the NIC

places newly received packets at the received pointer

and advances it. The steering module distributes the re-

ceived packets to packet threads and advances the pro-

cessed pointer. It also reserves unused packets from the

packet pool, places them into the ring and advances the

reserved pointer. The three pointers chase one another

as shown by the arrows. Similarly, on the sending side

the NIC sends packets pointed to by the sent pointer and

advances it. The muxing module places packets rewrit-

ten by packet threads into the ring and advances the

ready pointer. It also returns packets already sent by the

NIC back to the packet pool and advances the recycled

pointer. Note that the packets are not copied anywhere

by the forwarder.

To reduce the number of expensive boundary-crossing

operations, we process packets in batches whenever pos-

sible. In addition, the packet threads do not share any

4
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data with each other, preventing contention between

them. We pin each packet thread to a dedicated CPU core

to ensure best performance. With all these optimizations,

Maglev is able to achieve line rate with small packets, as

shown in Section 5.2.

Further, the latency that Maglev adds to the path taken

by each packet is small. Normally it takes the packet

thread about 350ns to process each packet on our stan-

dard servers. There are two special cases in which packet

processing may take longer. Since the forwarder pro-

cesses packets in batches, each batch is processed when

it grows large enough or when a periodic timer expires.

In practice we set the timer to be 50µs. Therefore if Ma-

glev is significantly underloaded, a 50µs delay will be

added to each packet in the worst case. One possible

optimization to this case is to adjust batch sizes dynam-

ically [32]. The other case where Maglev may add ex-

tra processing delay is when Maglev is overloaded. The

maximum number of packets that Maglev can buffer is

the size of the packet pool; beyond that the packets will

be dropped by the NIC. Assuming the packet pool size

is 3000 and the forwarder can process 10Mpps, it takes

about 300µs to process all buffered packets. Hence a

maximum of 300µs delay may be added to each packet

if Maglev is heavily overloaded. Fortunately, this case

can be avoided by proper capacity planning and adding

Maglev machines as needed.

3.3 Backend Selection

Once a packet is matched to a VIP, we need to choose a

backend for the packet from the VIP’s backend pool. For

connection-oriented protocols such as TCP, it is critical

to send all packets of a connection to the same backend.

We accomplish this with a two part strategy. First, we

select a backend using a new form of consistent hashing

which distributes traffic very evenly. Then we record the

selection in a local connection tracking table.

Maglev’s connection tracking table uses a fixed-size

hash table mapping 5-tuple hash values of packets to

backends. If the hash value of a packet does not exist

in the table, Maglev will assign a backend to the packet

and store the assignment in the table. Otherwise Maglev

will simply reuse the previously assigned backend. This

guarantees that packets belonging to the same connec-

tion are always sent to the same backend, as long as the

backend is still able to serve them. Connection tracking

comes in handy when the set of backends changes: for

instance, when backends go up and down, are added or

removed, or when the backend weights change.

However, per-Maglev connection tracking alone is in-

sufficient in our distributed environment. First, it as-

sumes all packets with the same 5-tuple are always sent

to the same Maglev machine. Because the router in front

of Maglev does not usually provide connection affinity,

this assumption does not hold when the set of Maglev

machines changes. Unfortunately, such changes are in-

evitable and may happen for various reasons. For exam-

ple, when upgradingMaglevs in a cluster we do a rolling

restart of machines, draining traffic from each one a few

moments beforehand and restoring it once the Maglev

starts serving again. This process may last over an hour,

duringwhich the set ofMaglevs keeps changing. We also

sometimes add, remove, or replace Maglev machines.

All of these operations make standard ECMP implemen-

tations shuffle traffic on a large scale, leading to connec-

tions switching to different Maglevs in mid-stream. The

new Maglevs will not have the correct connection table

entries, so if backend changes occur at the same time,

connections will break.

A second theoretical limitation is that the connection

tracking table has finite space. The table may fill up un-

der heavy load or SYN flood attacks. Since Maglev only

evicts entries from the connection table when they are

expired, once the table becomes full, we will need to

select a backend for each packet that doesn’t fit in the

table. While in practice there is plenty of memory on

a modern machine, in deployments where we share ma-

chines between Maglev and other services, we may need

to sharply limit the connection table size.

If any of the above cases occur, we can no longer rely

on connection tracking to handle backend changes. Thus

Maglev also provides consistent hashing to ensure reli-

able packet delivery under such circumstances.

3.4 Consistent Hashing

One possible approach to address the limitations of con-

nection tracking is to share connection state among all

Maglev machines, for example in a distributed hash ta-

ble as suggested in [34]. However, this would negatively

affect forwarding performance – recall that connection

states are not even shared among packet threads on the

same Maglev machine to avoid contention.

A better-performing solution is to use local consistent

hashing. The concept of consistent hashing [28] or ren-

dezvous hashing [38] was first introduced in the 1990s.

The idea is to generate a large lookup table with each

backend taking a number of entries in the table. These

methods provide two desirable properties that Maglev

also needs for resilient backend selection:

• load balancing: each backend will receive an al-

most equal number of connections.

• minimal disruption: when the set of backends

changes, a connectionwill likely be sent to the same

backend as it was before.

5
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Pseudocode 1 Populate Maglev hashing lookup table.

1: function POPULATE

2: for each i< N do next[ i ]← 0 end for

3: for each j <M do entry[ j ]←−1 end for

4: n← 0

5: while true do

6: for each i< N do

7: c← permutation[ i ][next[ i ] ]
8: while entry[c ]≥ 0 do

9: next[ i ]← next[ i ]+ 1

10: c← permutation[ i ][next[ i ] ]
11: end while

12: entry[c ]← i

13: next[ i ]← next[ i ]+ 1

14: n← n+ 1

15: if n=M then return end if

16: end for

17: end while

18: end function

Both [28] and [38] prioritize minimal disruption over

load balancing, as they were designed to optimize web

caching on a small number of servers. However, Maglev

takes the opposite approach for two reasons. First, it is

critical for Maglev to balance load as evenly as possible

among the backends. Otherwise the backends must be

aggressively overprovisioned in order to accommodate

the peak traffic. Maglev may have hundreds of backends

for certain VIPs, our experiments show that both [28]

and [38] will require a prohibitively large lookup table

for each VIP to provide the level of load balancing that

Maglev desires. Second, while minimizing lookup table

disruptions is important, a small number of disruptions is

tolerable by Maglev. Steady state, changes to the lookup

table do not lead to connection resets because connec-

tions’ affinity to Maglev machines does not change at the

same time. When connections’ affinity to Maglevs does

change, resets are proportional to the number of lookup

table disruptions.

With these considerations in mind, we developed a

new consistent hashing algorithm, which we callMaglev

hashing. The basic idea of Maglev hashing is to assign

a preference list of all the lookup table positions to each

backend. Then all the backends take turns filling their

most-preferred table positions that are still empty, until

the lookup table is completely filled in. Hence, Maglev

hashing gives an almost equal share of the lookup table

to each of the backends. Heterogeneous backend weights

can be achieved by altering the relative frequency of the

backends’ turns; the implementation details are not de-

scribed in this paper.

Let M be the size of the lookup table. The prefer-

ence list for backend i is stored in permutation[ i ], which

Table 1: A sample consistent hash lookup table.

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation tables for the

backends.

Before After

0 B1 B0

1 B0 B0

2 B1 B0

3 B0 B0

4 B2 B2

5 B2 B2

6 B0 B2

Lookup table before and

after B1 is removed.

is a random permutation of array (0 ..M − 1). As an

efficient way of generating permutation[ i ], each back-

end is assigned a unique name. We first hash the back-

end name using two different hashing functions to gen-

erate two numbers offset and skip. Then we generate

permutation[ i ] using these numbers as follows:

offset← h1(name[ i ]) mod M

skip← h2(name[ i ]) mod (M−1)+1

permutation[ i ][ j ]← (offset+ j× skip) mod M

M must be a prime number so that all values of skip

are relatively prime to it. Let N be the size of a VIP’s

backend pool. Its lookup table is populated using Pseu-

docode 1. We use next[ i ] to track the next index in

the permutation to be considered for backend i; the fi-

nal lookup table is stored in the array entry. In the body

of the outer while loop, we iterate through all the back-

ends. For each backend i we find a candidate index c

from permutation[ i ] which has not been filled yet, and

fill it with the backend. The loop keeps going until all

entries in the table have been filled.

The algorithm is guaranteed to finish. Its worst case

time complexity is O(M2) which only happens if there

are as many backends as lookup table entries and all the

backends hash to the same permutation. To avoid this

happening we always choose M such that M ≫ N. The

average time complexity is O(M logM) because at step

n we expect the algorithm to take M
M−n

tries to find an

empty candidate index, so the total number of steps is

∑M
n=1

M
n
. Each backend will take either ⌊M

N
⌋ or ⌈M

N
⌉ en-

tries in the lookup table. Therefore the number of entries

occupied by different backends will differ by at most 1.

In practice, we choose M to be larger than 100×N to

ensure at most a 1% difference in hash space assigned to

backends. Other methods of generating random permu-

tations, such as the Fisher-Yates Shuffle [20], generate

better quality permutations using more state, and would

work fine here as well.

We use the example in Table 1 to illustrate how Ma-

glev hashing works. Assume there are 3 backends, the

6
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lookup table size is 7, and the (offset, skip) pairs of the

three backends are (3, 4), (0, 2) and (3, 1). The generated

permutation tables are shown in the left column, and the

lookup tables before and after backend B1 is removed are

presented in the right column. As the example shows, the

lookup tables are evenly balanced among the backends

both with and without B1. After B1 is removed, aside

from updating all of the entries that contained B1, only

one other entry (row 6) needs to be changed. In prac-

tice, with larger lookup tables, Maglev hashing is fairly

resilient to backend changes, as we show in Section 5.3.

4 Operational Experience

Maglev is a highly complex distributed system that has

been serving Google for over six years. We have learned

a lot while operating it at a global scale. This section

describes how Maglev has evolved over the years to ac-

commodate our changing requirements, and some of the

tools we’ve built to monitor and debug the system.

4.1 Evolution of Maglev

Today’s Maglev differs in many details from the original

system. Most of the changes, such as the addition of IPv6

support, happened smoothly as a result of the extensi-

ble software architecture. This subsection discusses two

major changes to the implementation and deployment of

Maglev since its birth.

4.1.1 Failover

Maglev machines were originally deployed in active-

passive pairs to provide failure resilience, as were the

hardware load balancers they replaced. Only active ma-

chines served traffic in normal situations. When an ac-

tive machine became unhealthy, its passive counterpart

would take over and start serving. Connectionswere usu-

ally uninterrupted during this process thanks to Maglev

hashing, but there were some drawbacks to this setup. It

used resources inefficiently, since half of the machines

sat idle at all times. It also prevented us from scaling any

VIP past the capacity of a single Maglev machine. Fi-

nally, coordination between active and passive machines

was complex. In this setup, the machines’ announcers

would monitor each other’s health and serving priority,

escalating their own BGP priority if they lost sight of

each other, with various tie-breaking mechanisms.

We gained a great deal of capacity, efficiency, and

operational simplicity by moving to an ECMP model.

While Maglev hashing continues to protect us against oc-

casional ECMP flaps, we can multiply the capacity of a

VIP by the maximum ECMP set size of the routers, and

all machines can be fully utilized.

Figure 6: Maglev VIP matching.

4.1.2 Packet Processing

Maglev originally used the Linux kernel network stack

for packet processing. It had to interact with the NIC us-

ing kernel sockets, which brought significant overhead to

packet processing including hardware and software in-

terrupts, context switches and system calls [26]. Each

packet also had to be copied from kernel to userspace and

back again, which incurred additional overhead. Maglev

does not require a TCP/IP stack, but only needs to find a

proper backend for each packet and encapsulate it using

GRE. Therefore we lost no functionality and greatly im-

proved performance when we introduced the kernel by-

pass mechanism – the throughput of each Maglev ma-

chine is improved by more than a factor of five.

4.2 VIP Matching

In Google’s production networks, each cluster is as-

signed an external IP prefix that is globally routable.

For example, cluster C1 in Figure 6 has prefix

74.125.137.0/24. The same service is configured as dif-

ferent VIPs in different clusters, and the user is directed

to one of them by DNS. For instance, Service1 is config-

ured as 74.125.137.1 in C1 and 173.194.71.1 in C2.

Google has several different classes of clusters, serv-

ing different sets of VIPs. External prefix lengths are the

same for clusters of the same class, but may be different

for different cluster classes. Sometimes, in emergencies,

we need to redirect traffic to a different cluster via Ma-

glev encapsulation. Therefore, we need the target Ma-

glevs to be able to correctly classify traffic for arbitrary

other clusters. One possible solution is to define all VIPs

in all the clusters that may receive redirected traffic, but

that would cause synchronization and scalability issues.

Instead, we implemented a special numbering rule and

a novel VIP matching mechanism to cope with the prob-

lem. For each cluster class, we assign each VIP the same

suffix across all clusters of that class. Then we use a pre-

7
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fix/suffix matching mechanism for VIP matching. First,

the incoming packet goes through longest prefix match-

ing, to determine which cluster class it was destined for.

Then it goes through longest suffix matching specific to

that cluster class, to determine which backend pool it

should be sent to. In order to reduce the need to keep

configs globally in sync on a tight time scale, we precon-

figure maglevs with a large prefix group for each cluster

class, from which prefixes for new clusters of the same

class are allocated. This way a Maglev can correctly

serve traffic originally destined for a cluster that it has

never heard of.

As a result, each VIP is configured as a<Prefix Group,

IP suffix, port, protocol> tuple. Take Figure 6 as an ex-

ample. Assuming C2 and C3 are of the same class, if a

packet towards 173.194.71.1 is received in C2 but Ma-

glev determines none of the endpoints in C2 can serve

the packet, it will encapsulate and tunnel the packet

towards the VIP address in C3 for the same service

(173.194.72.1). Then a Maglev in C3 will decapsulate

the packet and match the inner packet to Service1 using

prefix/suffix matching, and the packet will be served by

an endpoint in C3 instead.

This VIP matching mechanism is specific to Google’s

production setup, but it provides a good example of the

value of rapid prototyping and iteration that a software-

based load balancer can offer.

4.3 Fragment Handling

One special case that is not covered by the system de-

scribed so far is IP fragmentation. Fragments require

special treatment becauseMaglev performs 5-tuple hash-

ing for most VIPs, but fragments do not all contain the

full 5-tuple. For example, if a large datagram is split

into two fragments, the first fragment will contain both

L3 and L4 headers while the second will only contain

the L3 header. Thus when Maglev receives a non-first

fragment, it cannot make the correct forwarding decision

based only on that packet’s headers.

Maglev must satisfy two requirements in order to han-

dle fragments correctly. First, all fragments of the same

datagram must be received by the same Maglev. Sec-

ond, the Maglev must make consistent backend selection

decisions for unfragmented packets, first fragments, and

non-first fragments.

In general, we cannot rely on the hardware in front of

Maglev to satisfy the first requirement on its own. For

example, some routers use 5-tuple hashing for first frag-

ments and 3-tuple for non-first fragments. We therefore

implemented a generic solution in Maglev to cope with

any fragment hashing behavior. Each Maglev is config-

ured with a special backend pool consisting of all Ma-

glevs within the cluster. Upon receipt of a fragment,

Maglev computes its 3-tuple hash using the L3 header

and forwards it to a Maglev from the pool based on the

hash value. Since all fragments belonging to the same

datagram contain the same 3-tuple, they are guaranteed

to be redirected to the same Maglev. We use the GRE

recursion control field to ensure that fragments are only

redirected once.

To meet the second requirement, Maglev uses the

same backend selection algorithm to choose a backend

for unfragmented packets and second-hop first fragments

(usually on different Maglev instances.) It maintains a

fixed-size fragment table which records forwarding de-

cisions for first fragments. When a second-hop non-first

fragment is received by the same machine, Maglev looks

it up in the fragment table and forwards it immediately if

a match is found; otherwise it is cached in the fragment

table until the first one is received or the entry expires.

This approach has two limitations: it introduces extra

hops to fragmented packets, which can potentially lead to

packet reordering. It also requires extra memory to buffer

non-first fragments. Since packet reorderingmay happen

anywhere in the network, we rely on the endpoints to

handle out-of-order packets. In practice only a few VIPs

are allowed to receive fragments, and we are easily able

to provide a big enough fragment table to handle them.

4.4 Monitoring and Debugging

We consistently monitor the health and behavior of Ma-

glev as we do any other production system – for exam-

ple, we use both black box and white box monitoring.

Our black box monitoring consists of agents all over the

world which periodically check the reachability and la-

tency of the configured VIPs. For our white box moni-

toring, we export various metrics from each Maglev ma-

chine via an HTTP server, and the monitoring system pe-

riodically queries each server to learn the latest Maglev

serving status details. The system sends alerts when it

observes abnormal behavior.

Due to Maglev’s distributed nature, multiple paths ex-

ist from the router through Maglev to the service end-

points. However, debugging is much easier when we are

able to discern the exact path that a specific packet takes

through the network. Thus we developed the packet-

tracer tool, similar to X-trace [21]. Packet-tracer con-

structs and sends specially marked Maglev-recognizable

payloads with specified L3 and L4 headers. The pay-

loads contain receiver IP addresses to which Maglev

sends debugging information. The packets usually target

a specific VIP and are routed normally to our frontend

locations. When a Maglev machine receives a packet-

tracer packet, it forwards the packet as usual, while also

sending debugging information, including its machine

name and the selected backend, to the specified receiver.

8
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Figure 7: Average, standard deviation and coefficient of

variation of normalized load on all service endpoints in

one cluster on a typical day.

Packet-tracer packets are rate-limited by Maglev, as they

are expensive to process. This tool is extremely helpful

in debugging production issues, especially when there is

more than one Maglev machine on the path, as happens

in the case of fragment redirection.

5 Evaluation

In this section we evaluate Maglev’s efficiency and per-

formance. We present results from one of Google’s pro-

duction clusters, as well as some microbenchmarks.

5.1 Load Balancing

As a network load balancer, Maglev’s major responsibil-

ity is to distribute traffic evenly across multiple service

endpoints. To illustrate the load balancing performance

of Maglev, we collected connections per second (cps)

data from 458 endpoints in a cluster located in Europe.

The data is aggregated from multiple HTTP services in-

cluding Web Search. The granularity of data collection

is 5 minutes, and the load is normalized by the average

cps throughout the day. Figure 7 shows the average and

standard deviation of the load across all endpoints on a

typical day. The traffic load exhibits a clear diurnal pat-

tern. The standard deviation is always small compared to

the average load; the coefficient of variation is between

6% and 7% most of the time.

Figure 7 also presents the overprovision factor com-

puted as the maximum load over the average load at each

time point. It is an important metric because we must en-

sure even the busiest endpoints will always have enough

capacity to serve all the traffic. The overprovision fac-

tor is less than 1.2 over 60% of the time. It is notably

higher during off-peak hours, which is the expected be-

havior because it is harder to balance the load when there

is less traffic. Besides, a higher overprovision factor dur-

ing off-peak hours does not require the addition of Ma-

Figure 8: Throughput with and without kernel bypass.

glev machines. This provides a guideline of how much

to overprovision at this specific location.

5.2 Single Machine Throughput

Since each Maglev machine receives a roughly equal

amount of traffic through ECMP, the overall throughput

of Maglev can be estimated as the number of Maglev

machines times the throughput of each single machine.

The more traffic each machine can handle, the fewer ma-

chines will be required to provide the same frontend ca-

pacity. Thus single machine throughput is essential to

the efficiency of the system.

The throughput of a Maglev machine is affected by

many factors, including the number of packet threads,

NIC speed, and traffic type. In this subsection we report

results from a small testbed to evaluate the packet pro-

cessing capability of a Maglev machine under various

conditions. Unless otherwise specified, all experiments

are conducted on servers equipped with two 8-core re-

cent server-class CPUs, one 10Gbps NIC and 128GB of

memory. We only use one CPU for Maglev. Everything

else, including the operating system, runs on the other

CPU. The testbed consists of two senders, two receivers

and one Maglev machine located in the same Ethernet

domain. The senders slowly increase their sending rates,

and the throughput of Maglev is recorded as the maxi-

mum number of packets per second (pps)2 that Maglev

can handle before starting to drop packets. We use two

senders to ensure Maglev eventually gets overloaded.

5.2.1 Kernel Bypass

In this experiment, we run Maglev in both vanilla Linux

network stack mode as well as kernel bypass mode to

evaluate the impact of kernel bypass on the throughput of

2Note that we report throughput by pps instead of bps because the

effect of packet size on the pps throughput is negligible. Hence we

measure the pps throughput using minimum-sized packets. The bps

throughput is equal to min(pps× packet size, line rate bps).
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Figure 9: Throughput with different TCP packet types.

Maglev. The senders are configured to send minimum-

sized UDP packets from different source ports so that

they are not assigned to the same packet thread by the

steering module. Due to limitations of the test environ-

ment, the minimum size of UDP packets the senders can

send is 52 bytes, slightly larger than the theoretical mini-

mum for Ethernet. We vary the number of packet threads

in each run of the experiment. Each packet thread is

pinned to a dedicated CPU core (as we do in production)

to ensure best performance. We use one core for steering

and muxing, thus there can be at most 7 packet threads.

We measure Maglev’s throughput with and without ker-

nel bypass and present the results in Figure 8.

The figure shows the clear advantage of running Ma-

glev in kernel bypass mode. There, Maglev is the bottle-

neck when there are no more than 4 packet threads; its

throughput increases with the number of packet threads.

When there are 5 or more packet threads, however, the

NIC becomes the bottleneck. On the other hand, Maglev

is always the bottleneck when using the vanilla Linux

network stack, and the maximum throughput achieved is

less than 30% that of kernel bypass.

5.2.2 Traffic Type

Depending on the code execution paths within a packet

thread, Maglev handles different types of traffic at differ-

ent speeds. For example, a packet thread needs to select

a backend for a TCP SYN packet and record it in the con-

nection tracking table; it only needs to do a lookup in the

connection tracking table for non-SYN packets. In this

experiment we measure how fast Maglev handles differ-

ent types of TCP packets.

Three traffic types are considered: SYN, non-SYN and

constant-5-tuple. For SYN and non-SYN experiments,

only SYN and non-SYN TCP packets are sent, respec-

tively. The SYN experiment shows howMaglev behaves

during SYN flood attacks, while the non-SYN experi-

ment shows how Maglev works with regular TCP traf-

fic, performing backend selection once and using con-

Figure 10: Throughput with different NIC speeds.

nection tracking afterwards. For the constant-5-tuple ex-

periment, all packets contain the same L3 and L4 head-

ers. This is a special case because the steering module

generally tries to send packets with the same 5-tuple to

the same packet thread, and only spreads them to other

threads when the chosen one is full. The senders vary the

source ports for SYN and non-SYN experiments to gen-

erate different 5-tuples, but always use the same source

port for the constant-5-tuple experiment. They always

send minimum-sized TCP packets, which are 64 bytes in

our test environment.

As in the previous experiment, Maglev reaches the

NIC’s capacity with 5 packet threads in the non-SYN

and constant-5-tuple experiments. However, for SYN

packets, we see that Maglev needs 6 packet threads to

saturate the NIC. This is because Maglev needs to per-

form backend selection for every SYN packet. Ma-

glev performs best under constant-5-tuple traffic, show-

ing that the steering module can effectively steer poorly-

distributed packet patterns. Since all packets have the

same 5-tuple, their connection tracking information al-

ways stays in the CPU cache, ensuring the highest

throughput. For non-SYN packets, there are sporadic

cache misses for connection tracking lookup, and so the

throughput is slightly lower than that for constant-5-tuple

traffic when there are fewer than 5 packet threads.

5.2.3 NIC Speed

In the previous experiments, the NIC is the bottleneck

as it is saturated by 5 packet threads. To understand

Maglev’s full capability, this experiment evaluates its

throughput using a faster NIC. Instead of the 10Gbps

NIC, we install a 40Gbps NIC on the Maglev machine,

and use the same setup as in Section 5.2.1. The results

are illustrated in Figure 10. When there are no more

than 5 packet threads, the 40Gbps NIC provides slightly

higher throughput as its chip is faster than the 10Gbps

one. However, the throughput growth for the 40Gbps

NIC does not slow down until 7 packet threads are used.

10
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Figure 11: Load balancing efficiency of different hash-

ing methods. M, K and R stand for Maglev, Karger and

Rendezvous, respectively. Lookup table size is 65537 for

small and 655373 for large.

Because the NIC is no longer the bottleneck, this figure

shows the upper bound of Maglev throughput with the

current hardware, which is slightly higher than 15Mpps.

In fact, the bottleneck here is the Maglev steering mod-

ule, which will be our focus of optimization when we

switch to 40Gbps NICs in the future.

5.3 Consistent Hashing

In this experiment we evaluate Maglev hashing and com-

pare it against Karger [28] and Rendezvous [38] hash-

ing. We are interested in two metrics: load balancing

efficiency and resilience to backend changes.

To evaluate the load balancing efficiency of the meth-

ods, we populate one lookup table using each method,

and count the number of table entries assigned to each

backend. We set the total number of backends to be 1000

and the lookup table size to be 65537 and 6553733. For

Karger we set the number of views to be 1000. Figure 11

presents the maximum and minimum percent of entries

per backend for each method and table size.

As expected, Maglev hashing provides almost perfect

load balancing no matter what the table size is. When ta-

ble size is 65537, Karger and Rendezvous require back-

ends to be overprovisioned by 29.7% and 49.5% respec-

tively to accommodate the imbalanced traffic. The num-

bers drop to 10.3% and 12.3% as the table size grows to

655373. Since there is one lookup table per VIP, the ta-

ble size must be limited in order to scale the number of

VIPs. Thus Karger and Rendezvous are not suitable for

Maglev’s load balancing needs.

Another important metric for consistent hashing is re-

silience to backend changes. Both Karger and Ren-

dezvous guarantee that when some backends fail, the

entries for the remaining backends will not be affected.

3There is no special significance to these numbers except that they

need to be prime.

Figure 12: Resilience of Maglev hashing to backend

changes.

Therefore we only evaluate this metric for Maglev. Fig-

ure 12 presents the percent of changed table entries as

a function of the percent of concurrent backend failures.

We set the number of backends to be 1000. For each fail-

ure number k, we randomly remove k backends from the

pool, regenerate the lookup table and compute the per-

cent of changed entries. We repeat the experiment 200

times for each k value and report the average results.

Figure 12 shows that the ratio of changed entries in-

creases with the number of concurrent failures. Maglev

hashing is more resilient to backend changes when the

table size is larger. In practice we use 65537 as the de-

fault table size because we expect concurrent backend

failures to be rare, and we still have connection track-

ing as the primary means of protection. In addition,

microbenchmarks show that the lookup table generation

time increases from 1.8ms to 22.9ms as the table size

grows from 65537 to 655373, which prevents us from

increasing the table size indefinitely.

6 Related Work

Unlike traditional hardware load balancers [1, 2, 3, 5, 9,

12, 13], Maglev is a distributed software system which

runs on commodity servers. Hardware load balancers

are usually deployed as active-passive pairs. Maglev

provides better efficiency and resiliency by running all

servers in active mode. In addition, upgrading hardware

load balancer capacity requires purchasing new hardware

as well as physically deploying it, making on demand ca-

pacity adjustment difficult. On the other hand, Maglev’s

capacity can easily be adjusted up or down without caus-

ing any service disruption. Some hardware vendors also

provide load balancing software that runs in virtualized

environments. Maglev provides much higher throughput

than these virtual load balancers.

Ananta [34] is a distributed software load balancer.

Like Maglev, it employs ECMP to scale out the sys-

tem and uses a flow table to achieve connection affinity.
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However, it does not provide a concrete mechanism to

handle changes to the load balancer pool gracefully, and

it is not specially optimized for single machine perfor-

mance. Maglev does not have a component similar to

Ananta’s HostAgent which provides NAT services, but

there is an external system (not described here) that of-

fers similar functionality. Ananta allows most internal

VIP traffic to bypass the load balancer. Maglev does

not provide a similar feature because it has enough ca-

pacity for the internal traffic. Embrane [4] is a similar

system developed for virtual environments. However, its

throughput optimization can be difficult due to the limi-

tations of virtualization. Duet [22] is a hybrid hardware

and software load balancer which aims to address the low

throughput issue of pure software load balancers. Ma-

glev is able to achieve sufficiently high throughput, thus

a hybrid solution becomes unnecessary.

There are also many generic load balancing software

packages, the most popular of which are NGINX [14],

HAProxy [7], and Linux Virtual Server [11]. They usu-

ally run on single servers, but it is also possible to deploy

multiple servers in an ECMP group behind a router to

achieve the scale-out model. They all provide consistent

hashing mechanisms. Compared to Maglev, they mostly

prioritize minimum disruption over even load balancing

as is done by [28] and [38]. Because they are designed

for portability, they are not aggressively optimized for

performance.

Consistent hashing [28] and rendezvous hashing [38]

were originally introduced for the purpose of distributed

cache coordination. Both methods provide guaranteed

resilience such that when some backends are removed,

only table entries pointing to those backends are updated.

However, they don’t provide good load balancing across

backends, which is an essential requirement for load bal-

ancers. On the contrary, Maglev’s consistent hashing

method achieves perfect balance across the backends at

the cost of slightly reduced resilience, which works well

in practice when paired with connection tracking. An-

other option for implementing consistent hashing is dis-

tributed hash tables such as Chord [37], but this would

add extra latency and complexity to the system.

Some of the performance optimization techniques

used in Maglev have been extensively studied since

1990s. Smith et al [36] suggested to improve appli-

cation throughput by reducing interrupts and memory

copying. Mogul et al [33] developed a polling-based

mechanism to avoid receive livelock caused by inter-

rupts. Edwards et al [19] explored the idea of userspace

networking but did not manage to bypass the kernel

completely. Marinos et al [31] showed that special-

ized userspace networking stacks with kernel bypass

can significantly improve application throughput. Han-

ford et al [25] suggested to distribute packet processing

tasks across multiple CPU cores to improve CPU cache

hit ratio. CuckooSwitch [41] is a high-performance soft-

ware L2 switch. One of its key techniques is to mask

memory access latency through batching and prefetch-

ing. RouteBricks [18] explained how to effectively uti-

lize multi-core CPUs for parallel packet processing.

Several kernel bypass techniques have been devel-

oped recently, including DPDK [8], OpenOnload [15],

netmap [35], and PF RING [17], etc. A good summary

of popular kernel bypass techniques is presented in [10].

These techniques can be used to effectively accelerate

packet processing speed, but they all come with certain

limitations. For example, DKPK and OpenOnload are

tied to specific NIC vendors while netmap and PF RING

both require a modified Linux kernel. In Maglev we im-

plement a flexible I/O layer which does not require kernel

modification and allows us to conveniently switch among

different NICs. As with other techniques, Maglev takes

over the NIC once started. It uses the TAP interface to

inject kernel packets back to the kernel.

GPUs have recently started becoming popular for

high-speed packet processing [24, 39]. However,

Kalia et al [27] recently showed that CPU-based solu-

tions are able to achieve similar performance with more

efficient resource utilization if implemented correctly.

7 Conclusion

This paper presents Maglev, a fast, reliable, scalable and

flexible software network load balancer. We built Maglev

to scale out via ECMP and to reliably serve at 10Gbps

line rate on each machine, for cost-effective performance

with rapidly increasing serving demands. We map con-

nections consistently to the same backends with a combi-

nation of connection tracking and Maglev hashing. Run-

ning this software system at scale has let us operate our

websites effectively for many years, reacting quickly to

increased demand and new feature needs.
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