Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Workshops
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
    • Work-in-Progress Reports (WiPs)
  • Sponsorship
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
      • Important Dates
      • Symposium Organizers
      • Symposium Topics
      • Refereed Papers
      • Symposium Activities
      • Submitting Papers
  • About
    • Symposium Organizers
    • Questions
    • Services
    • Help Promote
    • Past Symposia
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX Security '16 button

Get more
Help Promote graphics!

connect with usenix


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป k-fingerprinting: A Robust Scalable Website Fingerprinting Technique
Tweet

connect with us

k-fingerprinting: A Robust Scalable Website Fingerprinting Technique

Authors: 

Jamie Hayes and George Danezis, University College London

Abstract: 

Website fingerprinting enables an attacker to infer which web page a client is browsing through encrypted or anonymized network connections. We present a new website fingerprinting technique based on random decision forests and evaluate performance over standard web pages as well as Tor hidden services, on a larger scale than previous works. Our technique, k-fingerprinting, performs better than current state-of-the-art attacks even against website fingerprinting defenses, and we show that it is possible to launch a website fingerprinting attack in the face of a large amount of noisy data. We can correctly determine which of 30 monitored hidden services a client is visiting with 85% true positive rate (TPR), a false positive rate (FPR) as low as 0.02%, from a world size of 100,000 unmonitored web pages. We further show that error rates vary widely between web resources, and thus some patterns of use will be predictably more vulnerable to attack than others.

Jamie Hayes, University College London

George Danezis, University College London

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {197185,
author = {Jamie Hayes and George Danezis},
title = {k-fingerprinting: A Robust Scalable Website Fingerprinting Technique},
booktitle = {25th USENIX Security Symposium (USENIX Security 16)},
year = {2016},
isbn = {978-1-931971-32-4},
address = {Austin, TX},
pages = {1187--1203},
url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes},
publisher = {USENIX Association},
month = aug
}
Download
Hayes PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us