Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Workshops
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
    • Work-in-Progress Reports (WiPs)
  • Sponsorship
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
      • Important Dates
      • Symposium Organizers
      • Symposium Topics
      • Refereed Papers
      • Symposium Activities
      • Submitting Papers
  • About
    • Symposium Organizers
    • Questions
    • Services
    • Help Promote
    • Past Symposia
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX Security '16 button

Get more
Help Promote graphics!

connect with usenix


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » FlowFence: Practical Data Protection for Emerging IoT Application Frameworks
Tweet

connect with us

FlowFence: Practical Data Protection for Emerging IoT Application Frameworks

Authors: 

Earlence Fernandes, Justin Paupore, and Amir Rahmati, University of Michigan; Daniel Simionato and Mauro Conti, University of Padova; Atul Prakash, University of Michigan

Abstract: 

Emerging IoT programming frameworks enable building apps that compute on sensitive data produced by smart homes and wearables. However, these frameworks only support permission-based access control on sensitive data, which is ineffective at controlling how apps use data once they gain access. To address this limitation, we present FlowFence, a system that requires consumers of sensitive data to declare their intended data flow patterns, which it enforces with low overhead, while blocking all other undeclared flows. FlowFence achieves this by explicitly embedding data flows and the related control flows within app structure. Developers use Flow- Fence support to split their apps into two components: (1) A set of Quarantined Modules that operate on sensitive data in sandboxes, and (2) Code that does not operate on sensitive data but orchestrates execution by chaining Quarantined Modules together via taint-tracked opaque handles—references to data that can only be dereferenced inside sandboxes. We studied three existing IoT frameworks to derive key functionality goals for Flow- Fence, and we then ported three existing IoT apps. Securing these apps using FlowFence resulted in an average increase in size from 232 lines to 332 lines of source code. Performance results on ported apps indicate that FlowFence is practical: A face-recognition based doorcontroller app incurred a 4.9% latency overhead to recognize a face and unlock a door.

Earlence Fernandes, University of Michigan

Justin Paupore, University of Michigan

Amir Rahmati, University of Michigan

Daniel Simionato, University of Padova

Mauro Conti, University of Padova

Atul Prakash, University of Michigan

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {197137,
author = {Earlence Fernandes and Justin Paupore and Amir Rahmati and Daniel Simionato and Mauro Conti and Atul Prakash},
title = {{FlowFence}: Practical Data Protection for Emerging {IoT} Application Frameworks},
booktitle = {25th USENIX Security Symposium (USENIX Security 16)},
year = {2016},
isbn = {978-1-931971-32-4},
address = {Austin, TX},
pages = {531--548},
url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes},
publisher = {USENIX Association},
month = aug,
}
Download
Fernandes PDF

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us