Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Accepted Posters
  • Purchase the Box Set
  • Activities
    • Birds-of-a-Feather Sessions
    • Work-in-Progress Reports
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • Flyer PDF
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack
Tweet

connect with us

http://twitter.com/usenixsecurity
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack

Friday, August 1, 2014 - 10:30am
Authors: 

Yuval Yarom and Katrina Falkner, The University of Adelaide

Abstract: 

Sharing memory pages between non-trusting processes is a common method of reducing the memory footprint of multi-tenanted systems. In this paper we demonstrate that, due to a weakness in the Intel X86 processors, page sharing exposes processes to information leaks. We present FLUSH+RELOAD, a cache side-channel attack technique that exploits this weakness to monitor access to memory lines in shared pages. Unlike previous cache side-channel attacks, FLUSH+RELOAD targets the Last- Level Cache (i.e. L3 on processors with three cache levels). Consequently, the attack program and the victim do not need to share the execution core.

We demonstrate the efficacy of the FLUSH+RELOAD attack by using it to extract the private encryption keys from a victim program running GnuPG 1.4.13. We tested the attack both between two unrelated processes in a single operating system and between processes running in separate virtual machines. On average, the attack is able to recover 96.7% of the bits of the secret key by observing a single signature or decryption round.

Yuval Yarom, The University of Adelaide

Katrina Falkner, The University of Adelaide

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {184415,
author = {Yuval Yarom and Katrina Falkner},
title = {FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack},
booktitle = {23rd {USENIX} Security Symposium ({USENIX} Security 14)},
year = {2014},
isbn = {978-1-931971-15-7},
address = {San Diego, CA},
pages = {719--732},
url = {https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom},
publisher = {{USENIX} Association},
month = aug,
}
Download
Yarom PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Conference Policies
  • Contact Us