Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Accepted Posters
  • Activities
    • Birds-of-a-Feather Sessions
    • Work-in-Progress Reports
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • Flyer PDF
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Security Analysis of a Full-Body Scanner
Tweet

connect with us

http://twitter.com/usenixsecurity
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Security Analysis of a Full-Body Scanner

Tuesday, July 22, 2014 - 3:00pm
Authors: 

Keaton Mowery, University of California, San Diego; Eric Wustrow, University of Michigan; Tom Wypych, Corey Singleton, Chris Comfort, and Eric Rescorla, University of California, San Diego; Stephen Checkoway, Johns Hopkins University; J. Alex Halderman, University of Michigan; Hovav Shacham, University of California, San Diego

Abstract: 

Advanced imaging technologies are a new class of people screening systems used at airports and other sensitive environments to detect metallic as well as nonmetallic contraband. We present the first independent security evaluation of such a system, the Rapiscan Secure 1000 full-body scanner, which was widely deployed at airport checkpoints in the U.S. from 2009 until 2013. We find that the system provides weak protection against adaptive adversaries: It is possible to conceal knives, guns, and explosives from detection by exploiting properties of the device’s backscatter X-ray technology. We also investigate cyberphysical threats and propose novel attacks that use malicious software and hardware to compromise the the effectiveness, safety, and privacy of the device. Overall, our findings paint a mixed picture of the Secure 1000 that carries lessons for the design, evaluation, and operation of advanced imaging technologies, for the ongoing public debate concerning their use, and for cyberphysical security more broadly.

Keaton Mowery, University of California, San Diego

Eric Wustrow, University of Michigan

Tom Wypych, University of California, San Diego

Corey Singleton, University of California, San Diego

Chris Comfort, University of California, San Diego

Eric Rescorla, University of California, San Diego

J. Alex Halderman, University of Michigan

Hovav Shacham, University of California, San Diego

Stephen Checkoway, Johns Hopkins University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Mowery PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us