Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Accepted Posters
  • Activities
    • Birds-of-a-Feather Sessions
    • Work-in-Progress Reports
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • Flyer PDF
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Towards Reliable Storage of 56-bit Secrets in Human Memory
Tweet

connect with us

http://twitter.com/usenixsecurity
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Towards Reliable Storage of 56-bit Secrets in Human Memory

Friday, August 1, 2014 - 10:15am
Authors: 

Joseph Bonneau, Princeton University; Stuart Schechter, Microsoft Research

Abstract: 

Challenging the conventional wisdom that users cannot remember cryptographically-strong secrets, we test the hypothesis that users can learn randomly-assigned 56- bit codes (encoded as either 6 words or 12 characters) through spaced repetition. We asked remote research participants to perform a distractor task that required logging into a website 90 times, over up to two weeks, with a password of their choosing. After they entered their chosen password correctly we displayed a short code (4 letters or 2 words, 18.8 bits) that we required them to type. For subsequent logins we added an increasing delay prior to displaying the code, which participants could avoid by typing the code from memory. As participants learned, we added two more codes to comprise a 56.4- bit secret. Overall, 94% of participants eventually typed their entire secret from memory, learning it after a median of 36 logins. The learning component of our system added a median delay of just 6.9 s per login and a total of less than 12 minutes over an average of ten days. 88% were able to recall their codes exactly when asked at least three days later, with only 21% reporting having written their secret down. As one participant wrote with surprise, “the words are branded into my brain.”

Joseph Bonneau, Princeton University

Stuart Schechter, Microsoft Research

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Bonneau PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us