Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session and Happy Hour
  • Program
    • At a Glance
    • Technical Sessions
  • Sponsorship
  • Participate
    • Instructions for Participants
    • Call for Papers
    • Call for Posters
  • About
    • Organizers
    • Help Promote
    • Questions
    • Past Symposia
  • Home
  • Attend
  • Activities
  • Program
  • Sponsorship
  • Participate
  • About

sponsors

Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

help promote

NSDI '16 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » A Scalable Multi-User Uplink for Wi-Fi
Tweet

connect with us

A Scalable Multi-User Uplink for Wi-Fi

Authors: 

Adriana B. Flores, Sadia Quadri, and Edward W. Knightly, Rice University

Abstract: 

Mobile devices have fewer antennas than APs due to size and energy constraints. This antenna asymmetry restricts uplink capacity to the client antenna array size rather than the AP’s. To overcome antenna asymmetry, multiple clients can be grouped into a simultaneous multiuser transmission to achieve a full rank transmission that matches the number of antennas at the AP. In this paper, we design, implement, and experimentally evaluate MUSE, the first distributed and scalable system to achieve full-rank uplink multi-user capacity without control signaling for channel estimation, channel reporting, or user selection. Our experiments demonstrate full-rank multiplexing gains in the evaluated scenarios that show linear gains as the number of users increase while maintaining constant overhead.

Adriana B. Flores, Rice University

Sadia Quadri, Rice University

Edward W. Knightly, Rice University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Flores PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us