A Scalable Multi-User Uplink for Wi-Fi

Adriana B. Flores
Sadia Quadri, and Edward W. Knightly

NSDI, March 2016
Start of Wi-Fi

- Standardized in 1997
- SISO
- Single user at a time
- Omni-directional transmission
MIMO in 802.11

- Multiple concurrent transmissions
- MxN MIMO increases throughput by $\min(Tx\ antennas, \ Rx\ antennas)$
MIMO in 802.11

- Multiple concurrent transmissions
- MxN MIMO increases throughput by \(\min(\text{Tx antennas, Rx antennas}) \)
MIMO in 802.11

- Multiple concurrent transmissions
- MxN MIMO increases throughput by $\min(Tx$ antennas, Rx antennas)
Antenna Asymmetry

• MxN MIMO increases throughput by \(\min(Tx \text{ antennas}, Rx \text{ antennas}) \)
• Client devices often have \(N=1 \) antenna due to cost and space
Antenna Asymmetry

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Client devices often have N=1 antenna due to cost and space
Antenna Asymmetry

1 Antenna

• MxN MIMO increases throughput by \(\min(\text{Tx antennas}, \text{Rx antennas}) \)
• Client devices often have \(N=1 \) antenna due to cost and space
Antenna Asymmetry

- MxN MIMO increases throughput by $\min(\text{Tx antennas}, \text{Rx antennas})$
- Client devices often have $N=1$ antenna due to cost and space
Antenna Asymmetry

- MxN MIMO increases throughput by \(\min(\text{Tx antennas}, \text{Rx antennas}) \)
- Client devices often have \(N=1 \) antenna due to cost and space

A Scalable Multi-User Uplink for Wi-Fi
Adriana Flores
Downlink Multi-User MIMO

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Downlink Multi-User MIMO allows for APs to leverage antennas
- Transmitter sends multiple streams concurrently to different users
- Remove Interference by “Zero-Forcing Beamforming” (ZFBF)
Downlink Multi-User MIMO

- MxN MIMO increases throughput by \(\min(Tx\ antennas,\ Rx\ antennas)\)
- Downlink Multi-User MIMO allows for APs to leverage antennas
- Transmitter sends multiple streams concurrently to different users
- Remove Interference by “Zero-Forcing Beamforming” (ZFBF)
Downlink Multi-User MIMO

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Downlink Multi-User MIMO allows for APs to leverage antennas
- Transmitter sends multiple streams concurrently to different users
- Remove Interference by “Zero-Forcing Beamforming” (ZFBF)
Uplink Multi-User MIMO?

• M\(xN\) MIMO increases throughput by \(\min(Tx\ antenna, Rx\ antenna)\)
• Back to 1997 – SISO transmission
Uplink Multi-User MIMO?

- MxN MIMO increases throughput by $\min(\text{Tx antennas}, \text{Rx antennas})$
- Back to 1997 – SISO transmission
Why Not Mimic Downlink MU-MIMO?

• Paradigm Shift
• Many \rightarrow One
• No connection between devices
• How do we remove interference?
MUSE: **Multi-User Scalable** Uplink

- Match the number of transmitters to the number of antennas at AP
- No control signaling

A Scalable Multi-User Uplink for Wi-Fi
Adriana Flores
MUSE: Multi-User Scalable E Uplink

- Match the number of transmitters to the number of antennas at AP
- No control signaling
MUSE: Multi-User Scalable Uplink

- Match the number of transmitters to the number of antennas at AP
- No control signaling

- Multiple transmitters act as a single device with multiple antennas
 - No control channel
 - Remove interference

A Scalable Multi-User Uplink for Wi-Fi
Adriana Flores
Transmit Simultaneously

- **Association ID** for user selection and grouping
- **Arbitrary index** for each user
- AP informs the network the Max ID

![Diagram of AP Receiver and Users]

Rx AP

User 1

User 2

User 3

User 4

User 5

User 6

User 7

Time
Transmit Simultaneously

- **Association ID** for user selection and grouping
- **Arbitrary index** for each user
- AP informs the network the Max ID

A Scalable Multi-User Uplink for Wi-Fi
Adriana Flores
Transmit Simultaneously

- **Association ID** for user selection and grouping
- **Arbitrary index** for each user
- AP informs the network the Max ID

A Scalable Multi-User Uplink for Wi-Fi
Adriana Flores
Transmit Simultaneously

- **Association ID** for user selection and grouping
- **Arbitrary index** for each user
- AP informs the network the Max ID

![Diagram showing AP Receiver and users with associated IDs and data transmission]

A Scalable Multi-User Uplink for Wi-Fi
Adriana Flores
Transmit Simultaneously

- **Association ID** for user selection and grouping
- **Arbitrary index** for each user
- AP informs the network the Max ID

![Diagram](image-url)

- AP Receiver
- Circular ID Vicinity
- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

![Timeline Diagram](image-url)

- Rx AP
- User 1
- User 2
- User 3
- User 4
- User 5
- User 6
- User 7

Data

Time
Transmit Simultaneously

- **Association ID** for user selection and grouping
- **Arbitrary index** for each user
- AP informs the network the Max ID

![Diagram showing simultaneous transmission with AP receiver and user connections]
Remove Interference

- Environmental Multipath
- Independent paths (channels)
- Receiver (AP) estimate channels
Remove Interference

- Environmental Multipath
- Independent paths (channels)
- Receiver (AP) estimate channels
Receiver Channel Estimation

• Known set of training signals
• Enable distributed usage
• Fixed size (# Streams = # Rx antennas)
• User has assigned set of training signals
• Assignment through Association ID
• No control signaling (coordination) required
Receiver Channel Estimation

- Known set of training signals
- Enable distributed usage
- Fixed size (# Streams = # Rx antennas)
- User has assigned set of training signals
- Assignment through Association ID
- No control signaling (coordination) required
Group Adaptation

- **Association ID** Reassignment
- AP learning process: which users are most likely to transmit

![Diagram showing AP Receiver and associated devices with association IDs over time](image)
Group Adaptation

• **Association ID** Reassignment
• AP learning process: which users are most likely to transmit
Group Adaptation

• **Association ID** Reassignment

• AP learning process: which users are most likely to transmit
MUSE Implementation

• OTA experiments WARPLab
• 1 to 4 concurrent spatial streams

Evaluation Setup:
 • Clients: single WARP board with independent RF clocks
 • Time synchronized through triggering cables
 • Conference room 645 sq ft or 60 sq m
 • Evaluate over 20 locations
MUSE Scalability

- Scalability can be limited by inter-stream interference and channel correlation between users
- MUSE PHY ability to achieve full-rank capacity and permit scaling

Setup:
- 1x1, 2x2, 3x3, 4x4
- 2000 packets
- 24 Mbps
MUSE Scalability

- Scalability can be limited by inter-stream interference and channel correlation between users
- MUSE PHY ability to achieve full-rank capacity and permit scaling

Setup:
- 1x1, 2x2, 3x3, 4x4
- 2000 packets
- 24 Mbps

Tx Beamforming is **NOT** needed for distributed uplink multi-user transmission
MUSE Scalability

- Empirical capacity with estimated channels

\[C(\text{bps/Hz}) = \log_2[\det(I_N + (\text{SNR}/M)(HH^*))] \] [1]

Graph showing capacity vs. SNR for different MUSE configurations:
- MUSE 1x1
- MUSE 2x2
- MUSE 3x3
- MUSE 4x4

SNR (dB) vs. Capacity (bits/s/Hz)

193 Mbps to 669 Mbps

Conclusion MUSE

- **Scalable** Multi-User MIMO uplink WLAN
- Match the number of transmitters to the number of antennas at AP
- No control signaling

Emulate Single Multi-Antenna device
- Transmit Simultaneously
- ID-Based Grouping and Synchronization
- Enable distributed and dynamic Rx channel estimation
- Leverage environmental multipath
- Standard compatible
Conclusion MUSE

- **Scalable** Multi-User MIMO uplink WLAN
- Match the number of transmitters to the number of antennas at AP
- No control signaling

Emulate Single Multi-Antenna device
- Transmit Simultaneously
- ID-Based Grouping and Synchronization
- Enable distributed and dynamic Rx channel estimation
- Leverage environmental multipath
- Standard compatible