Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Student and Grants
    • Co-located Events
  • Program
    • Workshop Program
  • Sponsorship
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
  • About
    • Workshop Organizers
    • Help Promote
    • Questions
    • Past Workshops
  • Home
  • Attend
  • Program
  • Sponsorship
  • Participate
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

help promote

HotCloud '15 button

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป The Tail at Scale: How to Predict It?
Tweet

connect with us

The Tail at Scale: How to Predict It?

Authors: 

Minh Nguyen, Zhongwei Li, Feng Duan, Hao Che, Yu Lei, and Hong Jiang, The University of Texas at Arlington

Abstract: 

Scale-out applications have emerged as the dominant Internet services today. A request in a scale-out workload generally involves task partitioning and merging with barrier synchronization, making it difficult to predict the request tail latency to meet stringent tail Service Level Objectives (SLOs). In this paper, we find that the request tail latency can be faithfully predicted, in the high load region, by a prediction model using only the mean and variance of the task response time as input. The prediction errors for the 99th percentile request latency are found to be consistently within 10% at the load of 90%for both model and measurement-based testing cases. Consequently, the work in this paper establishes an important link between the request tail SLOs and the low order task statistics in a high load region, where the resource provisioning is desired. Finally, we discuss how the prediction model may facilitate highly scalable, tail-constrained resource provisioning for scaleout workloads.

Minh Nguyen, The University of Texas at Arlington

Zhongwei Li, The University of Texas at Arlington

Feng Duan, The University of Texas at Arlington

Hao Che, The University of Texas at Arlington

Hong Jiang, The University of Texas at Arlington

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Nguyen PDF
View the slides
  • Log in or    Register to post comments

Gold Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us