Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Program
    • At a Glance
    • Technical Sessions
    • Training Program
    • Poster Sessions
    • WiPs
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Participate
    • Call for Papers
    • Call for Posters and WiPs
    • Instructions for Participants
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote!
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

FAST '17 CFP

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Environmental Conditions and Disk Reliability in Free-cooled Datacenters
Tweet

connect with us

Environmental Conditions and Disk Reliability in Free-cooled Datacenters

Authors: 

Ioannis Manousakis, Rutgers University; Sriram Sankar, GoDaddy; Gregg McKnight, Microsoft; Thu D. Nguyen, Rutgers University; Ricardo Bianchini, Microsoft
Awarded Best Paper!

Abstract: 

Free cooling lowers datacenter costs significantly, but may also expose servers to higher and more variable temperatures and relative humidities. It is currently unclear whether these environmental conditions have a significant impact on hardware component reliability. Thus, in this paper, we use data from nine hyperscale datacenters to study the impact of environmental conditions on the reliability of server hardware, with a particular focus on disk drives and free cooling. Based on this study, we derive and validate a new model of disk lifetime as a function of environmental conditions. Furthermore, we quantify the tradeoffs between energy consumption, environmental conditions, component reliability, and datacenter costs. Finally, based on our analyses and model, we derive server and datacenter design lessons.

We draw many interesting observations, including (1) relative humidity seems to have a dominant impact on component failures; (2) disk failures increase significantly when operating at high relative humidity, due to controller/adaptor malfunction; and (3) though higher relative humidity increases component failures, software availability techniques can mask them and enable free-cooled operation, resulting in significantly lower infrastructure and energy costs that far outweigh the cost of the extra component failures.

Ioannis Manousakis, Rutgers University

Sriram Sankar, GoDaddy

Gregg McKnight, Microsoft

Thu D. Nguyen, Rutgers University

Ricardo Bianchini, Microsoft

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {194412,
author = {Ioannis Manousakis and Sriram Sankar and Gregg McKnight and Thu D. Nguyen and Ricardo Bianchini},
title = {Environmental Conditions and Disk Reliability in Free-cooled Datacenters},
booktitle = {14th USENIX Conference on File and Storage Technologies (FAST 16)},
year = {2016},
isbn = {978-1-931971-28-7},
address = {Santa Clara, CA},
pages = {53--65},
url = {https://www.usenix.org/conference/fast16/technical-sessions/presentation/manousakis},
publisher = {USENIX Association},
month = feb,
}
Download
Manousakis PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

Award: 
Best Paper
  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us