Environmental Conditions and Disk Reliability in Free-cooled Datacenters

Ioannis Manousakis, Sriram Sankar, Gregg McKnight,

Thu D. Nguyen, and Ricardo Bianchini

Problem Statement

- Datacenters are costly and consume lots of energy
- Evolving cooling technologies in datacenters
 - Chiller-based (traditional)
 - Water-side economized
 - Air-side economized (aka free cooling)
- Unexplored tradeoff: environmentals, reliability, cost

Cooling technologies

Cooling technologies

Cooling technologies

Cooling technologies

Cooling technologies

Cooling technologies

> Free cooling: may expose servers to harsh environmentals

Technology Characteristics

- Cooling technologies:
 - o Chiller-based
 - Water-side economized
 - Free cooling

Prior Work

- Hard disk failure studies in datacenters
 - o Pinheiro[FAST'07], El-Sayed[SIGMETRICS'12], Sankar[ToS'13]
- Focused on temperature and temperature variation
 - Chiller-based datacenters
 - Three types of cooling
 - Wider (more aggressive) environmental envelopes

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

Methodology

- Collect large traces from hard disks
 - o Nine datacenters (2-4 years), 1M HDDs
 - All types of Microsoft datacenters

Tag	Technology	Population	
CD1	Chiller	117K	
CD2	Water-side	146K	
CD3	Free-Cooled	24K	
HD1	Chiller	16K	
HD2	Water-side	100K	
HH1	Free-Cooled	168K	
HH2	Free-Cooled	213K	
нн3	Free-Cooled	124K	
HH4	Free-Cooled	161K	
Total		1.07M	

Methodology

- Collect extensive hard disk operation traces
 - Logged and archived by Microsoft Autopilot
 - 1. I/O communication faults (dead controller / TX-RX error)
 - 2. Behavioral SMART faults (read-write, sectors, seek, etc.)
 - 3. Age-related SMART faults (max hours, on-off cycles, etc.)

Autopilot

Methodology

- Logged and archived by Microsoft Autopilot
- 1. I/O communication faults (dead controller / TX-RX error)
- 2. Behavioral SMART faults (read-write, sectors, seek, etc.)
- 3. Age-related SMART faults (max hours, on-off cycles, etc.)

Annual Failure Rate (AFR) Results

- 1. Dry datacenters show low AFRs (1.5 2.3%)
- 2. Humid datacenters show higher AFRs (3.1 5.4%)

DC Tag	Technology	AFR	Increase wrt 1.5%
CD1	Chiller	1.5%	0%
CD2	Water-side	2.1%	40%
CD3	Free-Cooled	1.8%	20%
HD1	Chiller	2.0%	33%
HD2	Water-side	2.3%	53%
HH1	Free-Cooled	3.1%	107%
НН2	Free-Cooled	5.1%	240%
НН3	Free-Cooled	5.1%	240%
HH4	Free-Cooled	5.4%	260%

Annual Failure Rate (AFR) Results

- 1. Dry datacenters show low AFRs (1.5 2.3%)
- 2. Humid datacenters show higher AFRs (3.1 5.4%)

DC Tag	Technology	AFR	Increase wrt 1.5%
CD1	Chiller	1.5%	0%
CD2	Water-side	2.1%	40%
CD3	Free-Cooled	1.8%	20%
HD1	Chiller	2.0%	33%
HD2	Water-side	2.3%	53%
HH1	Free-Cooled	3.1%	107%
НН2	Free-Cooled	5.1%	240%
НН3	Free-Cooled	5.1%	240%
НН4	Free-Cooled	5.4%	260%

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

Root Causes: Error Breakdown

- Dry DCs → Bad sector count: ~50-60%
- Humid DCs → Controller/connectivity: ~60%

Root Causes: Temporal Clustering

- Significant temporal clustering on HH1
- No temporal clustering on HD1

Root Causes: Temporal Clustering

- Significant temporal clustering on HH1
- No temporal clustering on HD1

Data suggests a lifetime failure process

- Failure rate regressions for **HH1**
 - 1. Discover trends variables that change together
 - 2. Split into 4 groups P1 P4 (total population = 170K)

		coefficient a			
Popul.	%	Temp.	RH	CoV Temp.	CoV RH
P1	30.1	-6.4*10 ⁻³	5.1*10-2	-1.7*10 °	- 9.0*10 ⁻⁰
P2	25.6	-1.6*10-2	5.3*10-2	-1.0*10-1	-1.6*10-1
Р3	23.3	6.3*10-3	9.9*10-2	-8.4*10 °	3.5*10°
P4	19.6	3.3*10-2	11.5*10 ²	-3.9*10 °	-1.3*10°

$$y = a^*x + b$$

		соедисиент в			
Popul.	%	Temp.	RH	CoV Temp.	CoV RH
P1	30.1	5.1*10-5	1.2*10-4	-7.9*10 ⁻³	-6.5*10 ⁻³
P2	25.6	-1.9*10-5	1.0*10-4	-9.0*10 ⁻³	-3.7*10 ⁻³
Р3	23.3	1.4*10-3	2.1*10-4	-4.9*10-2	-4.4*10-2
P4	19.6	1.7*10-3	4.4*10-4	-1.3*10-1	-8.0*10-2

as officient b

$$y = a^* e^{(b^* x)}$$

- Failure rate regressions for **HH1**
 - 1. Discover trends variables that change together
 - 2. Split into 4 groups P1 P4 (total population = 170K)

$$y = a^*x + b$$

$$y = a^*e^{(b^*x)}$$

- Failure rate regressions for **HH1**
 - 1. Discover trends variables that change together
 - 2. Split into 4 groups P1 P4 (total population = 170K)

		coefficient a			
Popul.	0/0	Temp.	RH	CoV Temp.	CoV RH
P1	30.1	-6.4*10 ⁻³	5.1*10-2	-1.7*10 °	-9.0*10 ⁻⁰
P2	25.6	-1.6*10-2	5.3*10-2	-1.0*10-1	-1.6*10-1
Р3	23.3	6.3*10-3	9.9*10-2	-8.4*10 °	3.5*10 0
P4	19.6	3.3*10-2	11.5*10 ⁻²	-3.9*10 °	-1.3*10°

$$y = a^*x + b$$

$$y = a^*e^{(b^*x)}$$

> RH% seems to have the strongest impact

- 1. Discover trends variables that change together
- 2. Correlation matrix

- 1. Discover trends variables that change together
- 2. Correlation matrix

- 1. Discover trends variables that change together
- 2. Correlation matrix

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

Cooling-Related Cost Tradeoffs

- Free cooling results in higher HDD costs
- Operator might pay the extra HDD costs

Cooling-Related Cost Tradeoffs

- Free cooling results in higher HDD costs
- Operator might pay the extra HDD costs

Cooling-Related Cost Tradeoffs

- Cooling technologies vs costs
 - Free cooling results in higher HDD costs
 - Operator might pay the extra HDD costs
 - Free cooling savings make up for the extra costs

Summary of Observations

- 1. Failures correlate with environmentals
 - RH appears to be the dominant effect
- 2. Impact different parts of the HDD
 - o Temperature → mechanical & controller
 - \circ RH \rightarrow controller

Summary of Observations

- 1. Failures correlate with environmentals
 - RH appears to be the dominant effect
- 2. Impact different parts of the HDD
 - o Temperature → mechanical & controller
 - \circ RH \rightarrow controller
- 3. Failures do not occur instantly
 - Match a lifetime model
 - o Lifetime is "consumed" depending on environmentals
- 4. Free cooling still cheaper, despite the higher AFRs

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

Model Construction

Estimate AFRs

Various server and datacenter designs/conditions/locations

Model Construction

- Estimate AFRs
 - Various server and datacenter designs/conditions/locations
- 1. Modeling HDD mechanical degradation

$$AF_T = e^{\frac{E_a}{k} \cdot (\frac{1}{T_b} - \frac{1}{T_e})}$$

- 2. Modeling corrosion (controller)
 - Extension of Arrhenius equation
 - Accounts for combined temperature and RH effects

$$CR(\overline{T}, \overline{RH}) = const \cdot e^{(\frac{-E_a}{k \cdot \overline{T}})} \cdot e^{(b \cdot \overline{RH}) + (\frac{c \cdot \overline{RH}}{k \cdot \overline{T}})}$$

Model Construction

- Lifetime Acceleration Factor (AF)
 - o Compared to a baseline (AFR=1.5% @25C and 50% RH)
 - \circ AF₁: Temperature AF₂: RH and Temperature

Validation

- Collect hourly environmentals in other datacenters
- Use the model constructed in P1 to predict failure rates
- o Validated with P2, P3, P4, and CD3, HD1

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

• Disk placement affects HDD failure rates

• Disk placement affects HDD failure rates

• Disk placement affects HDD failure rates

Disk at the front

- Low Temp
- High RH%

• Disk placement affects HDD failure rates

Disk at the back

- High Temp
- Low RH%

• Disk placement affects HDD failure rates

Disk at the side

- Var. Temp
- Var. RH%

Conclusions

- Explored HDD reliability vs environmentals
 - o 9 datacenters with 3 cooling technologies, 1M disks
 - o AFRs impacted by environmentals, especially high RH
 - o Tradeoff favors free cooling: costs down, despite higher AFRs
- Developed an accurate model from real failure data
 - Combines corrosion and temperature
- Learned lessons
 - Server layout has a significant impact on HDD AFRs
 - More lessons in the paper

Thank you

Questions?

