Silent Spring: Prototype Pollution Leads to Remote Code Execution in Node.js


Mikhail Shcherbakov and Musard Balliu, KTH Royal Institute of Technology; Cristian-Alexandru Staicu, CISPA Helmholtz Center for Information Security


Prototype pollution is a dangerous vulnerability affecting prototype-based languages like JavaScript and the Node.js platform. It refers to the ability of an attacker to inject properties into an object's root prototype at runtime and subsequently trigger the execution of legitimate code gadgets that access these properties on the object's prototype, leading to attacks such as Denial of Service (DoS), privilege escalation, and Remote Code Execution (RCE). While there is anecdotal evidence that prototype pollution leads to RCE, current research does not tackle the challenge of gadget detection, thus only showing feasibility of DoS attacks, mainly against Node.js libraries.

In this paper, we set out to study the problem in a holistic way, from the detection of prototype pollution to detection of gadgets, with the ambitious goal of finding end-to-end exploits beyond DoS, in full-fledged Node.js applications. We build the first multi-staged framework that uses multi-label static taint analysis to identify prototype pollution in Node.js libraries and applications, as well as a hybrid approach to detect universal gadgets, notably, by analyzing the Node.js source code. We implement our framework on top of GitHub's static analysis framework CodeQL to find 11 universal gadgets in core Node.js APIs, leading to code execution. Furthermore, we use our methodology in a study of 15 popular Node.js applications to identify prototype pollutions and gadgets. We manually exploit eight RCE vulnerabilities in three high-profile applications such as NPM CLI, Parse Server, and Rocket.Chat. Our results provide alarming evidence that prototype pollution in combination with powerful universal gadgets lead to RCE in Node.js.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {285501,
author = {Mikhail Shcherbakov and Musard Balliu and Cristian-Alexandru Staicu},
title = {Silent Spring: Prototype Pollution Leads to Remote Code Execution in Node.js},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {5521--5538},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video