
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Silent Spring: Prototype Pollution Leads
to Remote Code Execution in Node.js

Mikhail Shcherbakov and Musard Balliu, KTH Royal Institute of Technology;
Cristian-Alexandru Staicu, CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov

USENIX’23 Artifact Appendix:
Silent Spring: Prototype Pollution Leads to Remote Code Execution in

Node.js

Mikhail Shcherbakov
KTH Royal Institute of Technology

Musard Balliu
KTH Royal Institute of Technology

Cristian-Alexandru Staicu
CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract
This artifact implements static code analysis for detecting
prototype pollution vulnerabilities and gadgets in server-side
JavaScript libraries and applications, including the Node.js
source code. The analysis builds on GitHub’s CodeQL frame-
work to identify prototype pollution sinks and gadgets. We
evaluate precision and recall metrics for prototype pollution
detection in comparison with existing CodeQL analysis as
well as the tool ODGen. Further, we evaluate the capabil-
ities of our tool, in combination with dynamic analysis, to
detect gadgets in a range of popular applications, including
the Node.js source code. Finally, we evaluate the prevalence
of detected gadgets on a dataset of popular libraries. All of
the artifact evaluation results refer to Section 6 of the paper
and the Appendix. The artifact evaluation aims for the three
badges: available, functional, and reproducible.

A.2 Description & Requirements
Here we describe hardware and software requirements to run
the artifact, as well as an overview of the benchmarks.

A.2.1 Security, privacy, and ethical concerns

There are no risks for the reviewers relating to security and
privacy of their machines. The artifact has been used to detect
8 remote code execution vulnerabilities in production-ready
applications and these vulnerabilities have been responsibly
disclosed to the vendors. We do not provide any details on
exploits that are yet to be fixed by the developers. Moreover,
exploit generation is a manual process, hence it is not part of
this artifact evaluation.

A.2.2 How to access

The artifact is accessible on GitHub at address
https://github.com/yuske/silent-spring/tree/2c7cfab. The

reproducibility of the results is supported by two modes: (1)
a prepackaged docker container and (2) detailed instructions
on how to set up the environment on own machine.

A.2.3 Hardware dependencies

We perform the experiments on an Intel Core i7-8850H CPU
2.60GHz, 16 GB RAM, and 50 GB of disk space. No specific
hardware features are required for the artifact evaluation.

A.2.4 Software dependencies

We originally run our experiments (except for the experiment
E2 of ODGen evaluation) on Windows OS and presented
these results in the paper. However, CodeQL and our evalua-
tion scripts support Linux and provide similar results.

A.2.5 Benchmarks

We provide five benchmarks for our experiments. The root
directory of the artifact repository contains folders with
benchmark names from the list below. Clone the repository
with its Git submodules and follow the instructions of Ap-
pendix A.3 to download all code of benchmark-silent-spring
and benchmark-npm-packages.
(benchmark-silent-spring): We compile an open-source

dataset of 100 vulnerable Node.js packages to evalu-
ate the recall and precision metrics of our static analysis.
We refer to Section 6.1 and Table 3 of the paper for de-
tails of the benchmark and our experiments against this
set of packages.

(benchmark-odgen): We consider the dataset of 19 pack-
ages provided by the tool ODGen to compare our static
analysis approach with the state-of-the-art results of
ODGen. The paper presents the details of the dataset
and analysis results in Section 6.1 and Table 3 as well.

(benchmark-popular-apps): We evaluate our approach on
popular Node.js applications from GitHub. The bench-
mark contains exact versions of 15 analyzed applications.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 327

https://github.com/yuske/silent-spring/tree/2c7cfab

The evaluation results are presented in Section 6.3 and
Table 2.

(benchmark-nodejs): We run our gadget detection analysis
against Node.js version 16.13.1. The source code of the
analyzed Node.js is located in a folder of the benchmark.
Table 1 of the paper reports all the detected gadgets and
their summary.

(benchmark-npm-packages): We estimate the prevalence
of the gadgets in an experiment with the 10,000 most
dependent-upon NPM packages. This benchmark con-
tains these NPM packages. We describe the results of
the experiment in the last paragraph of Section 6.2.3.

A.3 Set-up

We provide two modes for testing the artifacts (1) a
docker image with the prepared environment and (2) de-
tailed instructions on how to set up the environment on
own machine. To use the docker image, pull the docker
image yu5k3/silent-spring-experiments:latest from
Docker Hub, launch a docker container, and run /bin/bash
into the container to get access to the pre-configured envi-
ronment. In this mode, the reviewers may skip the setup
and installation steps, and move directly to the folder
~/projs/silent-spring in the docker container and follow
the instructions from Appendix A.3.2.

The following steps describe how to set up a required envi-
ronment on own machine.
(S1): Clone the ODGen repository https://github.com/Song-

Li/ODGen.git and checkout commit 306f6f2. Follow
its README file to set up the tool.

(S2): Clone the Silent Spring repository with its submodules
https://github.com/yuske/silent-spring.git and checkout
commit 2c7cfab.

(S3): Move to the scripts by cd silent-spring/scripts/.
Further, it is important to run any setup and evaluation
scripts using the scripts as a working directory.

(S4): Run the script ./benchmark-silent-spring.insta
ll-dependencies.sh to install dependencies for
benchmark-silent-spring.

(S5): Install NPM dependencies for the scripts by npm i.

A.3.1 Installation

The experimental evaluation requires the following software:
(I1): Node.js v.16.13.1. Follow the instruction on the official

website to install Node.js.
(I2): Cloc. We use cloc application to count lines of ana-

lyzed code. Use in the official repository to download
and install the latest version.

(I3): CodeQL v.2.9.2. Download and unzip an asset for your
platform of the version 2.9.2 from the official repository.
Add the path of the codeql folder to PATH environment
variable.

A.3.2 Basic Test

We recommend a basic test for 1-2 NPM packages with
our CodeQL queries to check that all required compo-
nents function correctly. The execution of command
node ./benchmark-silent-spring.codeql.js -l 1
from directory scripts performs the anal-
ysis of only one NPM package from
benchmark-silent-spring and stores the results at
../raw-data/benchmark-silent-spring.codeql.limit
.md. The analysis should be completed in about 3 min-
utes. We provide a reference file for comparison with
the basic test results. The easiest way to compare
the evaluation results with the reference is to execute
git diff -- ../raw-data/benchmark-silent-spring
.codeql.limit.md. The count of detected cases in the table
should be the same.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our static analysis tool, built on top of CodeQL,
achieves higher recall (up to 97%) for prototype pollu-
tion detection as compared to existing CodeQL analysis
and the state-of-the-art tool ODGen. At the same time, it
achieves moderate precision (on average 39%). This is
evaluated by the experiments (E1) and (E2) described in
Section 6.1 of the paper with results reported in Table 3.

(C2): Our tool has been used to uncover 8 new critical vul-
nerabilities in popular Node.js open-source applications.
This is evaluated by the experiment (E3) and described
in Section 6.3 and Table 2 of the paper.

(C3): We use static and dynamic analysis to detect 11 new
gadgets in Node.js code that may lead to Remote Code
Execution attacks. The gadget detection is evaluated by
the experiments (E4) and (E5) described in Section 6.2
and summarized in Table 1 of the paper.

(C4): We estimate the prevalence of the detected gadgets on
10,000 most dependent-upon NPM packages. The mea-
surement of the prevalence is shown by the experiment
(E6) and described in Section 6.2.3 of the paper.

A.4.2 Experiments

All experiments should be run in the scripts folder to match
the relative paths in the script files. All scripts collect the
results of experiments in the folder raw-data. This folder
already contains our results which can be used as reference
for comparison.
(E1): Prototype pollution detection with CodeQL [1 human-

hour + 3 compute-hours]: evaluate the existing Cod-
eQL analysis and our analysis framework on benchmark-
silent-spring and benchmark-odgen.
Execution: Run the following scripts:

328 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/Song-Li/ODGen.git
https://github.com/Song-Li/ODGen.git
https://github.com/yuske/silent-spring.git
https://nodejs.dev/
https://nodejs.dev/
https://github.com/AlDanial/cloc
https://github.com/github/codeql-cli-binaries/releases/tag/v2.9.2

>node ./benchmark -silent -spring.codeql.js
>node ./benchmark -silent -spring.baseline.

codeql.js
>node ./benchmark -odgen.codeql.js

Results: The file names of the analysis results corre-
spond to the file names with .md extension. The files
consist of tables where columns contain the detected
cases for the executed CodeQL queries. The last row
calculates the total number of True Positives (TP)
and False Positives (FP), as well as the recall and
precision metrics. The result for benchmark-odgen
contains only detected sinks that should be matched
to code locations from .PoC*.expected files (includ-
ing .PoC.ext.expected), e.g., benchmark-odgen/
asciitable.js@1.0.2/asciitable.PoC.expected.
We summarized benchmark-silent-spring results in Ta-
ble 3 in the paper. The experiment should yield the recall
and precision metrics that correspond to the metrics of
Total row in Table 3. The results of benchmark-odgen
are discussed in the last paragraph of Section 6.1.

(E2): Prototype pollution detection by ODGen [1 human-
hour + 11 compute-hours]: evaluate ODGen analysis on
benchmark-silent-spring and benchmark-odgen.
Preparation: Set the absolute paths to ODGen (vari-
able odgenDir) and the silent-spring folder (vari-
able ppStuffDir) in benchmark-odgen.odgen.js
and benchmark-silent-spring.odgen.js files. This
is already done for the provided docker image.
Execution: Run the following scripts:

>node ./benchmark -silent -spring.odgen.js
>node ./benchmark -odgen.odgen.js

Results: The scripts create two reports for benchmark-
silent-spring and benchmark-odgen that are
structured as the results of (E1). The results in
benchmark-silent-spring.odgen.md have worse
metrics than we reported. This is because ODGen makes
random choices and, in our experiments, we ran the
ODGen tool several times and merged their best results
from all runs in Table 2 (in order to compare with their
best configuration).

(E3): Vulnerability detection in applications [1 human-hour]:
evaluate our analysis to detect prototype pollution in
Node.js applications.
Execution: Run the following script:
node ./benchmark-popular-apps.codeql.js
Results: File benchmark-popular-apps.codeql.md
contains the count of the detected prototype pollution
cases and links to the source code of the detected sinks.
The number of the detected cases corresponds to the col-
umn Total - Cases of Table 2 in the paper. The provided
script reports two extra cases for one parse-server and
one sails due to the usage of earlier version of CodeQL
in the original experiments.

(E4): Gadget detection (dynamic analysis phase) [1 human-

hour]: evaluate the dynamic analysis of three Node.js
APIs for prototype pollution gadgets.
Execution: Run the following scripts:

>node ./gadgets.infer -properties.js
>node ./gadgets.dynamic -analysis.js

Results: The scripts report undefined proper-
ties subject to prototype pollution in the file
gadgets.dynamic-analysis.csv. We detected
37 undefined property reads in child_process,
require, and vm APIs, and described this experiment
in Section 6.2.1. The property TERM can be reached
on Windows but not Linux. The list of the reported
properties contains universal properties of the identified
gadgets that we describe in Table 1 in the paper.

(E5): Gadget detection (static analysis phase) [1 human-
hour]: evaluate the data flow analysis for the detected
properties in (E4).
Execution: Run the following script:
node ./gadgets.static-analysis.js
Results: We implement a CodeQL-based analysis to
detect flows from polluted properties to sinks, and vali-
date the results manually, as described in Section 6.2.2.
The provided script summarizes the results and re-
ports sources that are the exported functions trigger-
ing a reading of polluted properties and sinks that are
the internal functions taking the read values. The re-
port gadgets.static-analysis.md counts sources
and sinks to show feasibility of the manual analysis.
The folder gadgets.static-analysis.tmp contains
the detected function names.

(E6): Gadgets prevalence estimation [1 human-hour]: ana-
lyze the most dependent-upon NPM packages to esti-
mate potential exploitability of detected gadgets.
Preparation: Script ./gadgets.download-packages.sh
downloads NPM packages for analysis (execution takes
40 mins). Skip this step if you use the docker image.
Execution: Run the script (takes about 15 minutes):
node ./gadgets.prevalence-analysis.js
Results: The last line of the script’s output contains
analysis results, reporting Packages with no main - 2041;
packages have relative ’require’ - 4393; packages have

’child_process’ methods - 350. We report the results of
our experiment in the last paragraph of Section 6.2.3 in
the paper. The slight discrepancy is due to the use of
different versions of the NPM packages for the analysis.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 329

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

