Skill Squatting Attacks on Amazon Alexa

Authors: 

Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua Mason, Adam Bates, and Michael Bailey, University of Illinois, Urbana-Champaign

Abstract: 

The proliferation of the Internet of Things has increased reliance on voice-controlled devices to perform everyday tasks. Although these devices rely on accurate speech recognition for correct functionality, many users experience frequent misinterpretations in normal use. In this work, we conduct an empirical analysis of interpretation errors made by Amazon Alexa, the speech-recognition engine that powers the Amazon Echo family of devices. We leverage a dataset of 11,460 speech samples containing English words spoken by American speakers and identify where Alexa misinterprets the audio inputs, how often, and why. We find that certain misinterpretations appear consistently in repeated trials and are systematic. Next, we present and validate a new attack, called skill squatting. In skill squatting, an attacker leverages systematic errors to route a user to malicious application without their knowledge. In a variant of the attack we call spear skill squatting, we further demonstrate that this attack can be targeted at specific demographic groups. We conclude with a discussion of the security implications of speech interpretation errors, countermeasures, and future work.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Presentation Audio

BibTeX
@inproceedings {217575,
author = {Deepak Kumar and Riccardo Paccagnella and Paul Murley and Eric Hennenfent and Joshua Mason and Adam Bates and Michael Bailey},
title = {Skill Squatting Attacks on Amazon Alexa},
booktitle = {27th {USENIX} Security Symposium ({USENIX} Security 18)},
year = {2018},
isbn = {978-1-931971-46-1},
address = {Baltimore, MD},
pages = {33--47},
url = {https://www.usenix.org/conference/usenixsecurity18/presentation/kumar},
publisher = {{USENIX} Association},
}