Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Workshops
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
    • Work-in-Progress Reports (WiPs)
  • Sponsorship
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
      • Important Dates
      • Symposium Organizers
      • Symposium Topics
      • Refereed Papers
      • Symposium Activities
      • Submitting Papers
  • About
    • Symposium Organizers
    • Questions
    • Services
    • Help Promote
    • Past Symposia
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX Security '16 button

Get more
Help Promote graphics!

connect with usenix


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Faster Malicious 2-Party Secure Computation with Online/Offline Dual Execution
Tweet

connect with us

Faster Malicious 2-Party Secure Computation with Online/Offline Dual Execution

Authors: 

Peter Rindal and Mike Rosulek, Oregon State University

Abstract: 

We describe a highly optimized protocol for general purpose secure two-party computation (2PC) in the presence of malicious adversaries. Our starting point is a protocol of Kolesnikov et al. (TCC 2015). We adapt that protocol to the online/offline setting, where two parties repeatedly evaluate the same function (on possibly different inputs each time) and perform as much of the computation as possible in an offline preprocessing phase before their inputs are known. Along the way we develop several significant simplifications and optimizations to the protocol.

We have implemented a prototype of our protocol and report on its performance. When two parties on Amazon servers in the same region use our implementation to securely evaluate the AES circuit 1024 times, the amortized cost per evaluation is 5.1ms offline + 1.3ms online. The total offline+online cost of our protocol is in fact less than the online cost of any reported protocol with malicious security. For comparison, our protocol’s closest competitor (Lindell & Riva, CCS 2015) uses 74ms offline + 7ms online in an identical setup.

Our protocol can be further tuned to trade performance for leakage. As an example, the performance in the above scenario improves to 2.4ms offline + 1.0ms online if we allow an adversary to learn a single bit about the honest party’s input with probability 2−20 (but not violate any other security property, e.g. correctness).

Peter Rindal, Oregon State University

Mike Rosulek, Oregon State University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {197259,
author = {Peter Rindal and Mike Rosulek},
title = {Faster Malicious 2-Party Secure Computation with {Online/Offline} Dual Execution},
booktitle = {25th USENIX Security Symposium (USENIX Security 16)},
year = {2016},
isbn = {978-1-931971-32-4},
address = {Austin, TX},
pages = {297--314},
url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rindal},
publisher = {USENIX Association},
month = aug,
}
Download
Rindal PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us