Protecting Privacy of BLE Device Users
Kassem Fawaz, University of Michigan; Kyu-Han Kim, Hewlett Packard Labs; Kang G. Shin, University of Michigan
Bluetooth Low Energy (BLE) has emerged as an attractive technology to enable Internet of Things (IoTs) to interact with others in their vicinity. Our study of the behavior of more than 200 types of BLE-equipped devices has led to a surprising discovery: the BLE protocol, despite its privacy provisions, fails to address the most basic threat of all—hiding the device’s presence from curious adversaries. Revealing the device’s existence is the stepping stone toward more serious threats that include user profiling/fingerprinting, behavior tracking, inference of sensitive information, and exploitation of known vulnerabilities on the device. With thousands of manufacturers and developers around the world, it is very challenging, if not impossible, to envision the viability of any privacy or security solution that requires changes to the devices or the BLE protocol.
In this paper, we propose a new device-agnostic system, called BLE-Guardian, that protects the privacy of the users/environments equipped with BLE devices/IoTs. It enables the users and administrators to control those who discover, scan and connect to their devices. We have implemented BLE-Guardian using Ubertooth One, an off-the-shelf open Bluetooth development platform, facilitating its broad deployment. Our evaluation with real devices shows that BLE-Guardian effectively protects the users’ privacy while incurring little overhead on the communicating BLE-devices.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Kassem Fawaz and Kyu-Han Kim and Kang G. Shin},
title = {Protecting Privacy of {BLE} Device Users},
booktitle = {25th USENIX Security Symposium (USENIX Security 16)},
year = {2016},
isbn = {978-1-931971-32-4},
address = {Austin, TX},
pages = {1205--1221},
url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz},
publisher = {USENIX Association},
month = aug
}
connect with us