Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Workshops
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
    • Work-in-Progress Reports (WiPs)
  • Sponsorship
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
      • Important Dates
      • Symposium Organizers
      • Symposium Topics
      • Refereed Papers
      • Symposium Activities
      • Submitting Papers
  • About
    • Symposium Organizers
    • Questions
    • Services
    • Help Promote
    • Past Symposia
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX Security '16 button

Get more
Help Promote graphics!

connect with usenix


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Sanctum: Minimal Hardware Extensions for Strong Software Isolation
Tweet

connect with us

Sanctum: Minimal Hardware Extensions for Strong Software Isolation

Authors: 

Victor Costan, Ilia Lebedev, and Srinivas Devadas, MIT CSAIL

Abstract: 

Sanctum offers the same promise as Intel’s Software Guard Extensions (SGX), namely strong provable isolation of software modules running concurrently and sharing resources, but protects against an important class of additional software attacks that infer private information from a program’s memory access patterns. Sanctum shuns unnecessary complexity, leading to a simpler security analysis. We follow a principled approach to eliminating entire attack surfaces through isolation, rather than plugging attack-specific privacy leaks. Most of Sanctum’s logic is implemented in trusted software, which does not perform cryptographic operations using keys, and is easier to analyze than SGX’s opaque microcode, which does.

Our prototype targets a Rocket RISC-V core, an open implementation that allows any researcher to reason about its security properties. Sanctum’s extensions can be adapted to other processor cores, because we do not change any major CPU building block. Instead, we add hardware at the interfaces between generic building blocks, without impacting cycle time.

Sanctum demonstrates that strong software isolation is achievable with a surprisingly small set of minimally invasive hardware changes, and a very reasonable overhead.

Victor Costan, Massachusetts Institute of Technology

Ilia Lebedev, Massachusetts Institute of Technology

Srinivas Devadas, MIT CSAIL

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Costan PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us