Nathan Malkin and David Wagner, University of California, Berkeley; Serge Egelman, University of California, Berkeley & International Computer Science Institute
Intelligent voice assistants may soon become proactive, offering suggestions without being directly invoked. Such behavior increases privacy risks, since proactive operation requires continuous monitoring of conversations. To mitigate this problem, our study proposes and evaluates one potential privacy control, in which the assistant requests permission for the information it wishes to use immediately after hearing it.
To find out how people would react to runtime permission requests, we recruited 23 pairs of participants to hold conversations while receiving ambient suggestions from a proactive assistant, which we simulated in real time using the Wizard of Oz technique. The interactive sessions featured different modes and designs of runtime permission requests and were followed by in-depth interviews about people's preferences and concerns. Most participants were excited about the devices despite their continuous listening, but wanted control over the assistant's actions and their own data. They generally prioritized an interruption-free experience above more fine-grained control over what the device would hear.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Nathan Malkin and David Wagner and Serge Egelman},
title = {Runtime Permissions for Privacy in Proactive Intelligent Assistants},
booktitle = {Eighteenth Symposium on Usable Privacy and Security (SOUPS 2022)},
year = {2022},
isbn = {978-1-939133-30-4},
address = {Boston, MA},
pages = {633--651},
url = {https://www.usenix.org/conference/soups2022/presentation/malkin},
publisher = {USENIX Association},
month = aug
}