Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '14 Home
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Students and Grants
  • Co-located Workshops
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Arrakis: The Operating System is the Control Plane
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Arrakis: The Operating System is the Control Plane

Thursday, August 7, 2014 - 12:15pm
Authors: 

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, and Thomas Anderson, University of Washington; Timothy Roscoe, ETH Zürich

Awarded Best Paper

Abstract: 

Recent device hardware trends enable a new approach to the design of network server operating systems. In a traditional operating system, the kernel mediates access to device hardware by server applications, to enforce process isolation as well as network and disk security.We have designed and implemented a new operating system, Arrakis, that splits the traditional role of the kernel in two. Applications have direct access to virtualized I/O devices, allowing most I/O operations to skip the kernel entirely, while the kernel is re-engineered to provide network and disk protection without kernel mediation of every operation.We describe the hardware and software changes needed to take advantage of this new abstraction, and we illustrate its power by showing improvements of 2-5 in latency and 9 in throughput for a popular persistent NoSQL store relative to a well-tuned Linux implementation.

Simon Peter, University of Washington

Jialin Li, University of Washington

Irene Zhang, University of Washington

Dan R. K. Ports, University of Washington

Doug Woos, University of Washington

Arvind Krishnamurthy, University of Washington

Thomas Anderson, University of Washington

Timothy Roscoe, ETH Zürich

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {186140,
author = {Simon Peter and Jialin Li and Irene Zhang and Dan R. K. Ports and Doug Woos and Arvind Krishnamurthy and Thomas Anderson and Timothy Roscoe},
title = {Arrakis: The Operating System is the Control Plane},
booktitle = {11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)},
year = {2014},
isbn = { 978-1-931971-16-4},
address = {Broomfield, CO},
pages = {1--16},
url = {https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter},
publisher = {USENIX Association},
month = oct,
}
Download
Peter PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

Award: 
Jay Lepreau Best Paper
  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us