Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '14 Home
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Students and Grants
  • Co-located Workshops
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing

Thursday, August 7, 2014 - 1:45pm
Authors: 

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, and Jingren Zhou, Microsoft; Zhengping Qian, Ming Wu, and Lidong Zhou, Microsoft Research

Abstract: 

Efficiently scheduling data-parallel computation jobs over cloud-scale computing clusters is critical for job performance, system throughput, and resource utilization. It is becoming even more challenging with growing cluster sizes and more complex workloads with diverse characteristics. This paper presents Apollo, a highly scalable and coordinated scheduling framework, which has been deployed on production clusters at Microsoft to schedule thousands of computations with millions of tasks efficiently and effectively on tens of thousands of machines daily. The framework performs scheduling decisions in a distributed manner, utilizing global cluster information via a loosely coordinated mechanism. Each scheduling decision considers future resource availability and optimizes various performance and system factors together in a single unified model. Apollo is robust, with means to cope with unexpected system dynamics, and can take advantage of idle system resources gracefully while supplying guaranteed resources when needed.

This paper will be available on October 6.

Eric Boutin, Microsoft

Jaliya Ekanayake, Microsoft

Wei Lin, Microsoft

Bing Shi, Microsoft

Jingren Zhou, Microsoft

Zhengping Qian, Microsoft Research

Ming Wu, Microsoft Research

Lidong Zhou, Microsoft Research

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {186175,
author = {Eric Boutin and Jaliya Ekanayake and Wei Lin and Bing Shi and Jingren Zhou and Zhengping Qian and Ming Wu and Lidong Zhou},
title = {Apollo: Scalable and Coordinated Scheduling for {Cloud-Scale} Computing},
booktitle = {11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)},
year = {2014},
isbn = { 978-1-931971-16-4},
address = {Broomfield, CO},
pages = {285--300},
url = {https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin},
publisher = {USENIX Association},
month = oct
}
Download
Boutin PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us