
Apollo

― High level SQL-Like
language

― The job query plan is
represented as a DAG

― Tasks are the basic unit of
computation

― Tasks are grouped in
Stages

― Execution is driven by a
scheduler

Job sample: SCOPE (VLDBJ,
2012)

Tasks Stage

3

Minimize job latency while
 maximizing cluster utilization

Challenges
1.  Scale
2.  Heterogeneous workload
3.  Maximize utilization

 4

Jobs process gigabytes to petabytes of data
 and issue peaks of 100,000 scheduling requests/
seconds

Clusters run up to 170,000 tasks in parallel
 and each contains over 20,000 servers

Challenging Scale

5

Challenge: How
to make optimal
scheduling
decisions at full
production scale

6

Tasks runs
from seconds
to hours

Tasks can be
IO bound or
CPU bound

Tasks can
require from
100MB to
more than
10GB of
memory

Short tasks
are sensitive
to scheduling
latency

Long IO bound
tasks are
sensitive to
locality

Challenge:
Make optimal scheduling
decisions for a complex
workload

We need to effectively use resources and
 maintain performance guarantees
 but the workload constantly fluctuates

0

200

400

600

800

S
at

S

un

M
on

Tu

e
W

ed

Th
u Fr
i

S
at

S

un

M
on

Tu

e
W

ed

Th
u Fr
i

S
at

S

un

M
on

Tu

e
W

ed

Jo
b

C
on

cu
rr

en
cy

Number of concurrent jobs
drops by 40% on weekends

7

Challenge:
Maximize
utilization while
maintaining
performance
guarantees with a
dynamic
workload

Background
Challenges
Overview
― Distributed and coordinated architecture
― Estimation-based scheduling
― Conflict resolution
― Opportunistic scheduling
Evaluation at scale
Related work
Conclusion

8

To scale, Apollo adopts a distributed and coordinated
architecture

There is one scheduler per job
 each making high quality decisions independently,
 informed by global information

.

9

Queue allows to reason about future
resource availability
and to defer conflict resolution

10

The distributed
architectures scales by
allowing schedulers to
make independent
decisions with global
coordination

The server load representation
must
―  Be hardware independent
―  Be lightweight
―  Supports heterogeneous workload

Apollo represents the load
―  Using a wait-time matrix
―  It represents the expected wait time to

obtain resource of a certain size

11

The wait time matrix
allows to reason
about future
resource availability

To optimize
performance, the
scheduler needs
to simultaneously
consider many
conflicting factors

Apollo minimizes the estimated task completion
time

E = I + W + R

E: Estimated task completion time
I: Initialization time
W: Wait time
R: Runtime (including locality impact)

12

Apollo minimize
the task
completion time
by considering
relevant factors
holistically

Cluster is dynamic
― Schedulers can have conflicts
― Apollo defers the correction of

conflict

Apollo re-evaluates prior
decisions
― Triggers a duplicate if the decision

isn’t optimal with up to date
information

13

The correction
mechanisms allows
Apollo to handle
cluster dynamics

Maximize utilization
― Use the remaining capacity
― Dispatch more than the resource

allocation
― Tasks only consume otherwise idle

resources
― Tasks can be preempted or

terminated
― Tasks can be upgraded

Additional techniques
― Limit capacity share of each job
― Random queuing

14

Opportunistic
scheduling allows
Apollo to maximize
utilization

Background
Challenges
Overview
― Distributed and coordinated architecture
― Estimation-based scheduling
― Conflict resolution
― Opportunistic scheduling
Evaluation at scale
Related work
Conclusion

15

―  Incrementally rolled out from September to December
2013

― Each containing over 20,000 servers

In one cluster, Apollo
― Runs 170,000 tasks in parallel
― Tracks 14,000,000 pending tasks

16

0

10

20

30

40

50

Sun Mon Tue Wed Thu Fri Sat

Jo
b

La
te

nc
y

Apollo Baseline Ideal

Apollo: Consistent performance despite
variation in load

>1.5x speedup over baseline

18

Baseline: 40% slowdown under load

Regular tasks < 1 second queue time at the 95th percentile

Opportunistic tasks increase
their share of utilization on weekends

90% median CPU utilization
under load

19

0

20

40

60

80

S
un

Tu
e

Th
u

S
at

M
on

W
ed

Fr
i

S
un

Tu
e

S
ha

re
 o

f u
til

iz
at

io
n

Regular tasks
Opportunistic tasks

0

20

40

60

80

100

M
on

W
ed

Fr
i

S
un

Tu
e

Th
u

S
at

M
on

C
P

U
 U

til
iz

at
io

n

20th Median 80th

Background
Challenges
Overview
― Distributed and coordinated architecture
― Estimation-based scheduling
― Conflict resolution
― Opportunistic scheduling
Evaluation at scale
Related work
Conclusion

20

Decentralize
d
Schedulers

Hierchical
Scheduler
s

Centralized
Schedulers

21

Loosely
Coordinated
Distributed
architecture
Deployed to
clusters with
over 20,000
servers

High Quality
Scheduling

Minimize task
completion time
Consistent
performance

Maximize
resource
utilization

Opportunistic
scheduling
90% median
CPU utilization

22

