Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session and Happy Hour
  • Program
    • At a Glance
    • Technical Sessions
  • Sponsorship
  • Participate
    • Instructions for Participants
    • Call for Papers
    • Call for Posters
  • About
    • Organizers
    • Help Promote
    • Questions
    • Past Symposia
  • Home
  • Attend
  • Activities
  • Program
  • Sponsorship
  • Participate
  • About

sponsors

Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

help promote

NSDI '16 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » BeamSpy: Enabling Robust 60 GHz Links Under Blockage
Tweet

connect with us

BeamSpy: Enabling Robust 60 GHz Links Under Blockage

Authors: 

Sanjib Sur, Xinyu Zhang, and Parmesh Ramanathan, University of Wisconsin—Madison; Ranveer Chandra, Microsoft Research

Abstract: 

Due to high directionality and small wavelengths, 60 GHz links are highly vulnerable to human blockage. To overcome blockage, 60 GHz radios can use a phased-array antenna to search for and switch to unblocked beam directions. However, these techniques are reactive, and only trigger after the blockage has occurred, and hence, they take time to recover the link. In this paper, we propose BeamSpy, that can instantaneously predict the quality of 60 GHz beams, even under blockage, without the costly beam searching. BeamSpy captures unique spatial and blockage-invariant correlation among beams through a novel prediction model, exploiting which we can immediately select the best alternative beam direction whenever the current beam’s quality degrades. We apply BeamSpy to a run-time fast beam adaptation protocol, and a blockage-risk assessment scheme that can guide blockage-resilient link deployment. Our experiments on a reconfigurable 60 GHz platform demonstrate the effectiveness of BeamSpy's prediction framework, and its usefulness in enabling robust 60 GHz links.

Sanjib Sur, University of Wisconsin—Madison

Xinyu Zhang, University of Wisconsin—Madison

Parmesh Ramanathan, University of Wisconsin—Madison

Ranveer Chandra, Microsoft Research

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {194926,
author = {Sanjib Sur and Xinyu Zhang and Parmesh Ramanathan and Ranveer Chandra},
title = {{BeamSpy}: Enabling Robust 60 {GHz} Links Under Blockage},
booktitle = {13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16)},
year = {2016},
address = {Santa Clara, CA},
pages = {193--206},
url = {https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/sur},
publisher = {USENIX Association},
month = mar,
}
Download
Sur PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us