Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Program
    • At a Glance
    • Technical Sessions
    • Training Program
    • Poster Sessions
    • WiPs
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Participate
    • Call for Papers
    • Call for Posters and WiPs
    • Instructions for Participants
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote!
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

FAST '17 CFP

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป The Tail at Store: A Revelation from Millions of Hours of Disk and SSD Deployments
Tweet

connect with us

The Tail at Store: A Revelation from Millions of Hours of Disk and SSD Deployments

Authors: 

Mingzhe Hao, University of Chicago; Gokul Soundararajan and Deepak Kenchammana-Hosekote, NetApp, Inc.; Andrew A. Chien and Haryadi S. Gunawi, University of Chicago

Abstract: 

We study storage performance in over 450,000 disks and 4,000 SSDs over 87 days for an overall total of 857 million (disk) and 7 million (SSD) drive hours. We find that storage performance instability is not uncommon: 0.2% of the time, a disk is more than 2x slower than its peer drives in the same RAID group (and 0.6% for SSD). As a consequence, disk and SSD-based RAIDs experience at least one slow drive (i.e., storage tail) 1.5% and 2.2% of the time. To understand the root causes, we correlate slowdowns with other metrics (workload I/O rate and size, drive event, age, and model). Overall, we find that the primary cause of slowdowns are the internal characteristics and idiosyncrasies of modern disk and SSD drives. We observe that storage tails can adversely impact RAID performance, motivating the design of tail-tolerant RAID. To the best of our knowledge, this work is the most extensive documentation of storage performance instability in the field.

Mingzhe Hao, University of Chicago

Gokul Soundararajan, NetApp, Inc.

Deepak Kenchammana-Hosekote, NetApp, Inc.

Andrew A. Chien, University of Chicago

Haryadi S. Gunawi, University of Chicago

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Hao PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us