Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '14 Home
  • Conference Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
    • WiPs
  • Activities
    • Poster Sessions
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Conferences

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป ReconFS: A Reconstructable File System on Flash Storage
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/pages/USENIX-Association/124487434386
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

ReconFS: A Reconstructable File System on Flash Storage

Authors: 

Youyou Lu, Jiwu Shu, and Wei Wang, Tsinghua University

Abstract: 

Hierarchical namespaces (directory trees) in file systems are effective in indexing file system data. However, the update patterns of namespace metadata, such as intensive writeback and scattered small updates, exaggerate the writes to flash storage dramatically, which hurts both performance and endurance (i.e., limited program/erase cycles of flash memory) of the storage system.

In this paper, we propose a reconstructable file system, ReconFS, to reduce namespace metadata writeback size while providing hierarchical namespace access. ReconFS decouples the volatile and persistent directory tree maintenance. Hierarchical namespace access is emulated with the volatile directory tree, and the consistency and persistence of the persistent directory tree are provided using two mechanisms in case of system failures. First, consistency is ensured by embedding an inverted index in each page, eliminating the writes of the pointers (indexing for directory tree). Second, persistence is guaranteed by compacting and logging the scattered small updates to the metadata persistence log, so as to reduce write size. The inverted indices and logs are used respectively to reconstruct the structure and the content of the directory tree on reconstruction. Experiments show that ReconFS provides up to 46.3% performance improvement and 27.1% write reduction compared to ext2, a file system with low metadata overhead.

Youyou Lu, Tsinghua University

Jiwu Shu, Tsinghua University

Wei Wang, Tsinghua University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179836,
author = {Youyou Lu and Jiwu Shu and Wei Wang},
title = {ReconFS: A Reconstructable File System on Flash Storage},
booktitle = {12th {USENIX} Conference on File and Storage Technologies ({FAST} 14)},
year = {2014},
isbn = {ISBN 978-1-931971-08-9},
address = {Santa Clara, CA},
pages = {75--88},
url = {https://www.usenix.org/conference/fast14/technical-sessions/presentation/lu},
publisher = {{USENIX} Association},
month = feb,
}
Download
Lu PDF

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Open access to the FAST '14 Proceedings is sponsored by USENIX and Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Conference Policies
  • Contact Us