Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '14 Home
  • Conference Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
    • WiPs
  • Activities
    • Poster Sessions
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Conferences

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป On the Energy Overhead of Mobile Storage Systems
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/pages/USENIX-Association/124487434386
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

On the Energy Overhead of Mobile Storage Systems

Authors: 

Jing Li, University of California, San Diego; Anirudh Badam and Ranveer Chandra, Microsoft Research; Steven Swanson, University of California, San Diego; Bruce Worthington and Qi Zhang, Microsoft

Abstract: 

Secure digital cards and embedded multimedia cards are pervasively used as secondary storage devices in portable electronics, such as smartphones and tablets. These devices cost under 70 cents per gigabyte. They deliver more than 4000 random IOPS and 70 MBps of sequential access bandwidth. Additionally, they operate at a peak power lower than 250 milliwatts. However, software storage stack above the device level on most existing mobile platforms is not optimized to exploit the low-energy characteristics of such devices. This paper examines the energy consumption of the storage stack on mobile platforms.

We conduct several experiments on mobile platforms to analyze the energy requirements of their respective storage stacks. Software storage stack consumes up to 200 times more energy when compared to storage hardware, and the security and privacy requirements of mobile apps are a major cause. A storage energy model for mobile platforms is proposed to help developers optimize the energy requirements of storage intensive applications. Finally, a few optimizations are proposed to reduce the energy consumption of storage systems on these platforms.

Jing Li, University of California, San Diego

Anirudh Badam, Microsoft Research

Ranveer Chandra, Microsoft Research

Steven Swanson, University of California, San Diego

Bruce Worthington, Microsoft Research

Qi Zhang, Microsoft Research

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179841,
author = {Jing Li and Anirudh Badam and Ranveer Chandra and Steven Swanson and Bruce Worthington and Qi Zhang},
title = {On the Energy Overhead of Mobile Storage Systems},
booktitle = {12th USENIX Conference on File and Storage Technologies (FAST 14)},
year = {2014},
isbn = {ISBN 978-1-931971-08-9},
address = {Santa Clara, CA},
pages = {105--118},
url = {https://www.usenix.org/conference/fast14/technical-sessions/presentation/li},
publisher = {USENIX Association},
month = feb,
}
Download
Li PDF

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the FAST '14 Proceedings is sponsored by USENIX and Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us