Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '14 Home
  • Conference Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
    • WiPs
  • Activities
    • Poster Sessions
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Conferences

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/pages/USENIX-Association/124487434386
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches

Authors: 

Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu, IBM Almaden Research Center

Abstract: 

Storage systems based on Phase Change Memory (PCM) devices are beginning to generate considerable attention in both industry and academic communities. But whether the technology in its current state will be a commercially and technically viable alternative to entrenched technologies such as flash-based SSDs remains undecided. To address this it is important to consider PCM SSD devices not just from a device standpoint, but also from a holistic perspective.

This paper presents the results of our performance study of a recent all-PCM SSD prototype. The average latency for a 4 KiB random read is 6.7 s, which is about 16 faster than a comparable eMLC flash SSD. The distribution of I/O response times is also much narrower than flash SSD for both reads and writes. Based on the performance measurements and real-world workload traces, we explore two typical storage use-cases: tiering and caching. For tiering, we model a hypothetical storage system that consists of flash, HDD, and PCM to identify the combinations of device types that offer the best performance within cost constraints. For caching, we study whether PCM can improve performance compared to flash in terms of aggregate I/O time and read latency. We report that the IOPS/$ of a tiered storage system can be improved by 12–66% and the aggregate elapsed time of a server-side caching solution can be improved by up to 35% by adding PCM.

Our results show that—even at current price points—PCM storage devices show promising performance as a new component in enterprise storage systems.

Hyojun Kim, IBM Almaden Research Center

Sangeetha Seshadri, IBM Almaden Research Center

Clement L. Dickey, IBM Almaden Research Center

Lawrence Chiu, IBM Almaden Research Center

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179826,
author = {Hyojun Kim and Sangeetha Seshadri and Clement L. Dickey and Lawrence Chiu},
title = {Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches},
booktitle = {12th USENIX Conference on File and Storage Technologies (FAST 14)},
year = {2014},
isbn = {ISBN 978-1-931971-08-9},
address = {Santa Clara, CA},
pages = {33--45},
url = {https://www.usenix.org/conference/fast14/technical-sessions/presentation/kim},
publisher = {USENIX Association},
month = feb,
}
Download
Kim PDF

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the FAST '14 Proceedings is sponsored by USENIX and Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us