Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '14 Home
  • Conference Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
    • WiPs
  • Activities
    • Poster Sessions
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Conferences

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป MultiLanes: Providing Virtualized Storage for OS-level Virtualization on Many Cores
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/pages/USENIX-Association/124487434386
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

MultiLanes: Providing Virtualized Storage for OS-level Virtualization on Many Cores

Authors: 

Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai, Beihang University

Abstract: 

OS-level virtualization is an efficient method for server consolidation. However, the sharing of kernel services among the co-located virtualized environments (VEs) incurs performance interference between each other. Especially, interference effects within the shared I/O stack would lead to severe performance degradations on many-core platforms incorporating fast storage technologies (e.g., non-volatile memories).

This paper presents MultiLanes, a virtualized storage system for OS-level virtualization on many cores. MultiLanes builds an isolated I/O stack on top of a virtualized storage device for each VE to eliminate contention on kernel data structures and locks between them, thus scaling them to many cores. Moreover, the overhead of storage device virtualization is tuned to be negligible so that MultiLanes can deliver competitive performance against Linux. Apart from scalability, MultiLanes also delivers flexibility and security to all the VEs, as the virtualized storage device allows each VE to run its own guest file system.

The evaluation of our prototype system built for Linux container (LXC) on a 16-core machine with a RAM disk demonstrates MultiLanes outperforms Linux by up to 11.32X and 11.75X in micro- and macro-benchmarks, and exhibits nearly linear scalability.

Junbin Kang, Beihang University

Benlong Zhang, Beihang University

Tianyu Wo, Beihang University

Chunming Hu, Beihang University

Jinpeng Huai, Beihang University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179879,
author = {Junbin Kang and Benlong Zhang and Tianyu Wo and Chunming Hu and Jinpeng Huai},
title = {{MultiLanes}: Providing Virtualized Storage for {OS-level} Virtualization on Many Cores},
booktitle = {12th USENIX Conference on File and Storage Technologies (FAST 14)},
year = {2014},
isbn = {ISBN 978-1-931971-08-9},
address = {Santa Clara, CA},
pages = {317--329},
url = {https://www.usenix.org/conference/fast14/technical-sessions/presentation/kang},
publisher = {USENIX Association},
month = feb,
}
Download
Kang PDF

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the FAST '14 Proceedings is sponsored by USENIX and Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us