Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '14 Home
  • Conference Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
    • WiPs
  • Activities
    • Poster Sessions
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Conferences

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program and Erase Scaling
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/pages/USENIX-Association/124487434386
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program and Erase Scaling

Authors: 

Jaeyong Jeong and Sangwook Shane Hahn, Seoul National University; Sungjin Lee, MIT/CSAIL; Jihong Kim, Seoul National University

Abstract: 
The cost-per-bit of NAND flash memory has been continuously improved by semiconductor process scaling and multi-leveling technologies (e.g., a 10 nm-node TLC device). However, the decreasing lifetime of NAND flash memory as a side effect of recent advanced technologies is regarded as a main barrier for a wide adoption of NAND flash-based storage systems. In this paper, we propose a new system-level approach, called dynamic program and erase scaling (DPES), for improving the lifetime (particularly, endurance) of NAND flash memory. The DPES approach is based on our key observation that changing the erase voltage as well as the erase time significantly affects the NAND endurance. By slowly erasing a NAND block with a lower erase voltage, we can improve the NAND endurance very effectively. By modifying NAND chips to support multiple write and erase modes with different operation voltages and times, DPES enables a flash software to exploit the new tradeoff relationships between the NAND endurance and erase voltage/speed under dynamic program and erase scaling. We have implemented the first DPES-aware FTL, called autoFTL, which improves the NAND endurance with a negligible degradation in the overall write throughput. Our experimental results using various I/O traces show that autoFTL can improve the maximum number of P/E cycles by 61.2% over an existing DPES-unaware FTL with less than 2.2% decrease in the overall write throughput.

Jaeyong Jeong, Seoul National University

Sangwook Shane Hahn, Seoul National University

Sungjin Lee, MIT/CSAIL

Jihong Kim, Seoul National University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179838,
author = {Jaeyong Jeong and Sangwook Shane Hahn and Sungjin Lee and Jihong Kim},
title = {Lifetime Improvement of {NAND} Flash-based Storage Systems Using Dynamic Program and Erase Scaling},
booktitle = {12th USENIX Conference on File and Storage Technologies (FAST 14)},
year = {2014},
isbn = {ISBN 978-1-931971-08-9},
address = {Santa Clara, CA},
pages = {61--74},
url = {https://www.usenix.org/conference/fast14/technical-sessions/presentation/jeong},
publisher = {USENIX Association},
month = feb
}
Download
Jeong PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the FAST '14 Proceedings is sponsored by USENIX and Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us