Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '14 Home
  • Conference Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
    • WiPs
  • Activities
    • Poster Sessions
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Conferences

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Parity Logging with Reserved Space: Towards Efficient Updates and Recovery in Erasure-coded Clustered Storage
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/pages/USENIX-Association/124487434386
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Parity Logging with Reserved Space: Towards Efficient Updates and Recovery in Erasure-coded Clustered Storage

Authors: 

Jeremy C. W. Chan, Qian Ding, Patrick P. C. Lee, and Helen H. W. Chan, The Chinese University of Hong Kong

Abstract: 

Many modern storage systems adopt erasure coding to provide data availability guarantees with low redundancy. Log-based storage is often used to append new data rather than overwrite existing data so as to achieve high update efficiency, but introduces significant I/O overhead during recovery due to reassembling updates from data and parity chunks. We propose parity logging with reserved space, which comprises two key design features: (1) it takes a hybrid of in-place data updates and log-based parity updates to balance the costs of updates and recovery, and (2) it keeps parity updates in a reserved space next to the parity chunk to mitigate disk seeks. We further propose a workload-aware scheme to dynamically predict and adjust the reserved space size. We prototype an erasure-coded clustered storage system called CodFS, and conduct testbed experiments on different update schemes under synthetic and real-world workloads. We show that our proposed update scheme achieves high update and recovery performance, which cannot be simultaneously achieved by pure in-place or log-based update schemes.

Jeremy C. W. Chan, The Chinese University of Hong Kong

Qian Ding, The Chinese University of Hong Kong

Patrick P. C. Lee, The Chinese University of Hong Kong

Helen H. W. Chan, The Chinese University of Hong Kong

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179851,
author = {Jeremy C. W. Chan and Qian Ding and Patrick P. C. Lee and Helen H. W. Chan},
title = {Parity Logging with Reserved Space: Towards {Efficient} Updates and Recovery in Erasure-coded Clustered Storage},
booktitle = {12th USENIX Conference on File and Storage Technologies (FAST 14)},
year = {2014},
isbn = {ISBN 978-1-931971-08-9},
address = {Santa Clara, CA},
pages = {163--176},
url = {https://www.usenix.org/conference/fast14/technical-sessions/presentation/chan},
publisher = {USENIX Association},
month = feb,
}
Download
Chan PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the FAST '14 Proceedings is sponsored by USENIX and Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us