Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '13 Home
  • Organizers
  • Registration Information
  • Registration Discounts
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
  • Purchase the Box Set
  • Posters and WiPs
  • Birds-of-a-Feather Sessions
  • Sponsors
  • Activities
  • Hotel and Travel Information
  • Services
  • Students
  • Questions
  • Help Promote
  • For Participants
  • Call for Papers
  • Past Proceedings

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Understanding the Robustness of SSDs under Power Fault
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups?home=&gid=49559
http://www.youtube.com/user/USENIXAssociation

Understanding the Robustness of SSDs under Power Fault

Authors: 

Mai Zheng, The Ohio State University; Joseph Tucek, HP Labs; Feng Qin, The Ohio State University; Mark Lillibridge, HP Labs

Abstract: 

Modern storage technology (SSDs, No-SQL databases, commoditized RAID hardware, etc.) bring new reliability challenges to the already complicated storage stack. Among other things, the behavior of these new components during power faults—which happen relatively frequently in data centers—is an important yet mostly ignored issue in this dependability-critical area. Understanding how new storage components behave under power fault is the first step towards designing new robust storage systems.

In this paper, we propose a new methodology to expose reliability issues in block devices under power faults. Our framework includes specially-designed hardware to inject power faults directly to devices, workloads to stress storage components, and techniques to detect various types of failures. Applying our testing framework, we test fifteen commodity SSDs from five different vendors using more than three thousand fault injection cycles in total. Our experimental results reveal that thirteen out of the fifteen tested SSD devices exhibit surprising failure behaviors under power faults, including bit corruption, shorn writes, unserializable writes, metadata corruption, and total device failure.

Mai Zheng, Ohio State University

Joseph Tucek, HP Labs

Feng Qin, Ohio State University

Mark Lillibridge, Hewlett-Packard

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {180742,
author = {Mai Zheng and Joseph Tucek and Feng Qin and Mark Lillibridge},
title = {Understanding the Robustness of {SSDs} under Power Fault},
booktitle = {11th USENIX Conference on File and Storage Technologies (FAST 13)},
year = {2013},
isbn = {978-1-931971-99-7},
address = {San Jose, CA},
pages = {271--284},
url = {https://www.usenix.org/conference/fast13/technical-sessions/presentation/zheng},
publisher = {USENIX Association},
month = feb,
}
Download
Zheng PDF
FAST '13 Erratum for Zheng PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us