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Abstract
Modern storage technology (SSDs, No-SQL

databases, commoditized RAID hardware, etc.) bring

new reliability challenges to the already complicated

storage stack. Among other things, the behavior of these

new components during power faults—which happen

relatively frequently in data centers—is an important yet

mostly ignored issue in this dependability-critical area.

Understanding how new storage components behave

under power fault is the first step towards designing new

robust storage systems.

In this paper, we propose a new methodology to ex-

pose reliability issues in block devices under power

faults. Our framework includes specially-designed hard-

ware to inject power faults directly to devices, workloads

to stress storage components, and techniques to detect

various types of failures. Applying our testing frame-

work, we test fifteen commodity SSDs from five differ-

ent vendors using more than three thousand fault injec-

tion cycles in total. Our experimental results reveal that

thirteen out of the fifteen tested SSD devices exhibit sur-

prising failure behaviors under power faults, including

bit corruption, shorn writes, unserializable writes, meta-

data corruption, and total device failure.

1 Introduction

Compared to traditional spinning disk, flash-based solid-

state disks (SSDs) offer much greater performance and

lower power draw. Hence SSDs are already displacing

spinning disk in many datacenters [17]. However, while

we have over 50 years of collected wisdom working with

spinning disk, flash-based SSDs are relatively new [1],

and not nearly as well understood. Specifically, the be-

havior of flash memory in adverse conditions has only

been studied at a component level [26]; given the opaque

and confidential nature of typical flash translation layer

(FTL) firmware, the behavior of full devices in unusual

conditions is still a mystery to the public.

This paper considers the behavior of SSDs1 under

fault. Specifically, we consider how commercially avail-

able SSDs behave when power is cut unexpectedly dur-

ing operation. As SSDs are replacing spinning disk as the

non-volatile component of computer systems, the extent

to which they are actually non-volatile is of interest. Al-

though loss of power seems like an easy fault to prevent,

recent experience [18, 13, 16, 4] shows that a simple loss

of power is still a distressingly frequent occurrence even

for sophisticated datacenter operators like Amazon. If

even well-prepared and experienced datacenter operators

cannot ensure continuous power, it becomes critical that

we understand how our non-volatile components behave

when they lose power.

By creating an automatic failure testing framework,

we subjected 15 SSDs from 5 different vendors to more

than three thousand fault injection cycles in total. Sur-

prisingly, we find that 13 out of the 15 devices, including

the supposedly “enterprise-class” devices, exhibit failure

behavior contrary to our expectations. Every failed de-

vice lost some amount of data that we would have ex-

pected to survive the power fault. Even worse, two of the

fifteen devices became massively corrupted, with one no

longer registering on the SAS bus at all after 136 fault

cycles, and another suffering one third of its blocks be-

coming inaccessible after merely 8 fault cycles. More

generally, our contributions include:

• Hardware to inject power faults into block de-

vices. Unlike previous work [27] that simulates

device-level faults in software, we actually cut the

power to real devices. Furthermore, we purposely

used a side-channel (the legacy serial port bus) to

communicate with our power cutting hardware, so

none of the OS, device driver, bus controller, or the

block device itself have an opportunity to perform a

clean shutdown.

1In this paper, “SSD” means “flash-based SSD”

1



272 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

• Software to stress the devices under test and

check their consistency post-fault. We propose

a specially-crafted workload that is stressful to a

device while allowing efficient consistency check-

ing after fault recovery. Our record format includes

features to allow easy detection of a wide variety of

failure types with a minimum of overhead. Our con-

sistency checker detects and classifies both standard

“local” failures (e.g., bit corruption, flying writes,

and shorn writes) as well as “global” failures such

as lack of serializability. Further, the workload is

designed considering the advanced optimizations

modern SSD firmwares use in order to provide a

maximally-stressful workload.

• Experimental results for fifteen different SSDs

and two hard drives. Using our implementation of

the proposed testing framework, we have evaluated

the failure modes of fifteen commodity SSDs as

well as two traditional spinning-platter hard drives

for comparison. Our experimental results show that

SSDs have counter-intuitive behavior under power

fault: of the tested devices, only two SSDs (of the

samemodel) and one enterprise-grade spinning disk

adhered strictly to the expected semantics of behav-

ior under power fault. Every other drive failed to

provide correct behavior under fault. The unex-

pected behaviors we observed include bit corrup-

tion, shorn writes, unserializable writes, metadata

corruption, and total device failure.

SSDs offer the promise of vastly higher performance

operation; our results show that they do not provide re-

liable durability under even the simplest of faults: loss

of power. Although the improved performance is tempt-

ing, for durability-critical workloads many currently-

available flash devices are inadequate. Careful evalua-

tion of the reliability properties of a block device is nec-

essary before it can be truly relied upon to be durable.

2 Background

In this section we will give a brief overview of issues that

directly pertain to the durability of devices under power

fault.

2.1 NAND Flash Low-Level Details

The component that allows SSDs to achieve their high

level of performance is NAND flash [25]. NAND flash

operates through the injection of electrons onto a “float-

ing gate”. If only two levels of electrons (e.g., having

some vs. none at all) are used then the flash is single-

level cell (SLC); if instead many levels (e.g., none, some,

many, lots) are used then the device is a multi-level cell

(MLC) encoding 2 bits per physical device, or possibly

even an eight-level/three bit “triple-level cell” (TLC).

In terms of higher-level characteristics, MLC flash is

more complex, slower, and less reliable comparing to

SLC. A common trick to improve the performance of

MLC flash is to consider the two bits in each physical

cell to be from separate logical pages [24]. This trick is

nearly universally used by all MLC flash vendors [19].

However, since writing2 to a flash cell is typically a com-

plex, iterative process [15], writing to the second logical

page in a multi-level cell could disturb the value of the

first logical page. Hence, one would expect that MLC

flash would be susceptible to corruption of previously-

written pages during a power fault.

NAND flash is typically organized into erase blocks

and pages, which are large-sized chunks that are physi-

cally linked. An erase block is a physically contiguous

set of cells (usually on the order of 1/4 to 2 MB) that can

only be zero-ed all together. A page is a physically con-

tiguous set of cells (typically 4 KB) that can only be writ-

ten to as a unit. Typical flash SSD designs require that

small updates (e.g., 512 bytes) that are below the size of

a full page (4 KB) be performed as a read/modify/write

of a full page.

The floating gate inside a NAND flash cell is sus-

ceptible to a variety of faults [11, 15, 10, 22] that may

cause data corruption. The most commonly understood

of these faults is write endurance: every time a cell is

erased, some number of electrons may “stick” to the

floating gate, and the accumulation of these electrons

limits the number of program/erase cycles to a few thou-

sand or tens of thousands. However, less well known

faults include program disturb (where writes of nearby

pages can modify the voltage on neighboring pages),

read disturb (where reading of a neighboring page can

cause electrons to drain from the floating gate), and sim-

ple aging (where electrons slowly leak from the floating

gate over time). All of these faults can result in the loss

of user data.

2.2 SSD High-Level Concerns

Because NAND flash can only be written an entire page

at a time, and only erased in even larger blocks, namely

erase blocks, SSDs using NAND flash have sophisti-

cated firmware, called a Flash Translation Layer (FTL),

to make the device appear as if it can do update-in-place.

The mechanisms for this are typically reminiscent of a

journaling filesystem [21]. The specifics of a particular

2We use the terms “programming” and “writing” to mean the same

thing: injecting electrons onto a floating gate. This is distinct from

erasing, which is draining electrons from all of the floating gates of a

large number of cells.
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Failure Description

Bit Corruption Records exhibit random bit errors

Flying Writes Well-formed records end up in the wrong place

Shorn Writes Operations are partially done at a level below the expected sector size

Metadata Corruption Metadata in FTL is corrupted

Dead Device Device does not work at all, or mostly does not work

Unserializability Final state of storage does not result from a serializable operation order

Table 1: Brief description of the types of failures we attempted to detect.

FTL are generally considered confidential to the man-

ufacturer; hence general understanding of FTL behav-

ior is limited. However, the primary responsibility of an

FTL is to maintain a mapping between logical and physi-

cal addresses, potentially utilizing sophisticated schemes

to minimize the size of the remapping tables and the

amount of garbage collection needed [14]. Some FTLs

are quite sophisticated, and will even compress data in

order to reduce the amount of wear imposed on the un-

derlying flash [12].

Because writing out updated remapping tables for ev-

ery write would be overly expensive, the remapping ta-

bles are typically stored in a volatile write-back cache

protected by a large supercapacitor. A well designed FTL

will be conservative in its performance until the superca-

pacitor is charged, which typically takes under a minute

from power on [19]. Due to cost considerations, man-

ufacturers typically attempt to minimize the size of the

write-back cache as well as the supercapacitor backing

it.

Loss of power during program operations can make

the flash cells more susceptible to other faults, since the

level of electrons on the floating gate may not be within

usual specification [26]. Erase operations are also sus-

ceptible to power loss, since they take much longer to

complete than program operations [2]. The result of cor-

ruption at the cell-level is typically an ECC error at a

higher level. An incompletely programmed write may

be masked by the FTL by returning the old value rather

than the corrupted new value, if the old value has not

been erased and overwritten yet [19].

3 Testing Framework

Rather than simply writing to a drive while cutting

power, it is important to carefully lay out a methodol-

ogy that is likely to cause failures; it is equally important

to be prepared to detect and classify failures.

Table 1 briefly describes the types of failures that we

expected to uncover. For each of these, we have an

underlying expectation of how a power loss could in-

duce this failure behavior. Because half-programmed

flash cells are susceptible to bit errors, of course, we ex-

pected to see bit corruption. Unlike in spinning disks,

where flying writes are caused by errors in positioning

the drive head (servo errors), we expected to see flying

writes in SSDs due to corruption and missing updates

in the FTL’s remapping tables. Because single opera-

tions may be internally remapped to multiple flash chips

to improve throughput, we expected to see shorn writes.

We also expected to see operations about a device’s page

size “shear” (e.g., we expected to see only 4 KB of an

8 KB update), but at that level the behavior of the drive

is still correct. Because an FTL is a complex piece of

software, and corruption of its internal state could be

problematic, we expected to see metadata corruption and

dead devices. Finally, due to the high degree of paral-

lelism inside an SSD, and because we feel that current

FTLs are likely not as well tested as the firmware of tra-

ditional spinning disks, we expected to see unserializable

writes.

Of course, expecting to see all of these things is one

thing; to actually see them one needs to be capable of

detecting them if they do happen. Overall, these failures

can be divided into two sorts: local consistency failures

and global consistency failures. Most of the faults (e.g.,

bit corruption, flying writes, etc.) can be detected us-

ing local-only data: either a record is correct or it is not.

However, unserializability is a more complex property:

whether the result of a workload is serializable depends

not only on individual records, but on how they can fit

into a total order of all the operations, including opera-

tions that may no longer be visible on the device.

3.1 Detecting local failures

Local failures require examining only a single record to

understand. Hence, these can be checked in a single read-

pass over the entire device.

In order to detect local failures, we need to write

records that can be checked for consistency. Figure 1

shows the basic layout of our records: a header with

fields that allow consistency checking, and repetitions of

3
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Field Reason

Checksum (checksum) Efficiently detect bit corruption and shorn writes

Timestamp (timestamp) Allows checking for unserializable writes

Block Number (block#) Detects flying writes

Raw Block Number (raw blk#) Detects errors in device size and workload code

Worker Id (worker id) Allows checking for unserializable writes and to regenerate a workload

Operation Count (op cnt) Allows checking for unserializable writes and to regenerate a workload

Seed (seed) Allows regeneration of the workload

Marker (marker) Allows easy detection of header boundary

Table 2: Description of header fields and why they are included.

Figure 1: Record format.

that header to pad the record out to the desired length.

Table 2 shows the structure of the header format.

Some of the fields in the header are easy to explain.

Including a checksum field is obvious: it allows de-

tection of bit corruption. Similarly, to check the order-

ing of operations (the heart of serializability checking),

a timestamp is necessary to know when they occurred.

Finally, amarker allows easy visual detection of header

boundaries when a dump is examined manually.

However, the other fields bear some discussion. The

block# field is necessary to efficiently check flying

writes. A flying write is when an otherwise correct up-

date is applied to the wrong location. This is particularly

insidious because it cannot be detected by a checksum

over the record. However, by explicitly including the lo-

cation we intended to write to in the record itself, flying

writes become easy to detect.

The raw blk# field is more straightforward: we gen-

erate our workload by generating 64-bit random num-

bers, and our devices are not 264 records long. By in-

cluding the raw random number, we can check that the

workload knew the number of records on the device and

performed the modulo operation correctly. An unfortu-

nate bug in an early version of our workload code moti-

vates this field.

Theworker id, op cnt, and seed fields work together

for two purposes. First, they allow us to more efficiently

check serializability, as described in Section 3.2. Second,

all three of them together allow us to completely regen-

erate the full record except timestamp, and to determine

if our workload would have written said record (e.g.,

as opposed to garbage from an older run). To do this,

we do not use a standard psuedorandom number gen-

erator like a linear-shift feedback register or Mersenne

Twister. Instead, we use a hash function in counter

mode. That is, our random number generator (RNG)

generates the sequence of numbers r0, r1, . . . , rn, where

rop cnt = hash(worker id, seed, op cnt). We do this

so that we can generate any particular ri in constant time,

rather than inO(i) time, as would be the case with a more

traditional RNG.

By storing the information necessary to recreate the

complete record in its header, we can not only verify that

the record is correct, but we can identify partial records

written in a shorn write so long as at least one copy of the

header is written. Although this also allows detection of

bit corruption, using the checksum plus the block number

as the primary means of correctness checking improves

the performance of the checker by 33% (from 15 minutes

down to 10 minutes). Storing the checksum alone does

not allow accurate detection of shorn writes, and hence

both capabilities, quick error detection from the check-

sum and detailed error categorization from the recreat-

able record, are necessary.

3.1.1 Dealing with complex FTLs

Because we are examining the block level behavior of the

SSDs, we want the size of a record to be the same as the

common block size used in the kernel, which is typically

4 KB. Hence, we need to fill out a full record beyond

the relatively small size of the header. A naive padding

scheme may fill in the padding space of different records

with identical values, which make records largely simi-

lar. This does not allow us to detect shorn writes, since

the records asides from the header would be identical: if

the shorn write only writes the later portion of the record,

it would be undetectable. Another approach is to fill the

padding of the record with random numbers. This in-
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Figure 2: Randomization of record format. (a) Generate

the random format by XORing the readable format with

the random mask. (b) Recover from the random format

by XORing it with the random mask again.

deed makes each record unique, but while we can detect

a shorn write, we cannot identify the details: without the

header, we do not know where the partial record came

from.

A much better design is to pad with copies of the

header. This not only makes each record unique, but it

provides redundancy in the face of corruption and allows

us to tell which write was partially overwritten in the case

of a shorn write.

However, a particular optimization of some FTLs

means we cannot quite be this straightforward. By

padding the record with duplicated headers, the whole

record exhibits repetitive patterns. As mentioned in Sec-

tion 2, some advanced SSDs may perform compression

on data with certain patterns. Consequently, the number

of bytes written to the flash memory is reduced, and the

number of operations involvedmay also be reduced. This

conflicts with our desire to stress test SSDs. In order to

avoid such compression, we further perform randomiza-

tion on the regular record format.

As shown in Figure 2, we XOR the record with a ran-

dom mask before sending it to the device. This creates a

less compressible format. Similarly, we can recover from

the random representation by XORing with the same

mask again. By using the same random mask for each

record, we can convert between the understandable for-

mat and the less compressible format without knowing

which record was written. In this way, we avoid the in-

terference of compression, while maintaining a readable

record format.

3.2 Detecting global failures

Local failures, such as simple bit corruption, are straight-

forward to understand and test for. Unserializability, on

the other hand, is more complex. Unserializability is not

a property of a single record, and thus cannot be tested

with fairly local information; it may depend on the state

of all other records.

According to the POSIX specification, a write request

is synchronous if the file is opened with the O SYNC






    





    








    










Figure 3: Serializability of writes within one thread.

(a) Thread A synchronously writes three records with

both the 1st and 2nd records written to the same ad-

dress (block#1). (b) In a serializable state, the on-device

records reflect the order of synchronous writes; that is,

later records (e.g., A2) overwrite earlier records (e.g.,

A1) written to the same address. In the shown unseri-

alizable state, A2 is either lost or overwritten by A1.

flag. For a synchronous write request, the calling process

thread will be blocked until the data has been physically

written to the underlying media. An unserialized write

is a violation of the synchronous constraint of write re-

quests issued by one thread or between multiple threads;

that is, a write that does not effect the media in a man-

ner consistent with the known order of issue and comple-

tion. For the simple case of a single thread, synchronous

requests should be committed to disk in the same or-

der as they are issued. For example, in Figure 3 (a),

threadA writes three records (i.e., A1, A2, and A3) syn-
chronously. Each record is supposed to be commited

to the physical device before the next operation is is-

sued. Both A1 and A2 are issued to the same address

(block#1), whileA3 is issued to another block (block#3).

Figure 3 (b) shows two states of the recovered device.

The fact that A3 is visible on the recovered device (both

states) indicates all of the previous writes should have

completed. However, in the unserializable state shown,

A2 is not evident. Instead,A1 is found in block#1, which
means that either A2 was lost, or A2 was overwritten

by A1. Neither is correct, since A1 was before A2.
Similarly, synchronously issued requests from multiple

threads to the same addresses should be completed in the

(partial) order enforced by synchronization.

Some SSDs improve their performance by exploiting

internal parallelism at different levels. Hence we expect

a buggy FTL may commit writes out of order, which

means that a write “completed” and returned to the user

5
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Figure 4: Deriving the completion-time partial order

based on the generating time of records. (a) Within one

thread, the write completion time of a record (e.g., A1′)
is bounded by the generating time of the record (e.g.,A1)
and the next record (e.g., A2). Thus, A1 happens before

its completion (A1′), which happens before A2. Simi-

larly,B1 happens beforeB1′, which happens beforeB2.
Between threads, B1 happens before A2 based on their

timestamps. However, this relation does not imply A1′

happens before B1′. (b) Here A2 happens before B1.
Therefore, due to transitivity, the completion ofA1 (A1′)
happens before B1′.

early on may be written to the flash memory after a write

that completed later. Further, during a power fault we

expect that some FTLs may fail to persist outstanding

writes to the flash, or may lose mapping table updates;

both faults would result in the recovered drive having

contents that are impossible given any correct serial exe-

cution of the workload. We call such misordered or miss-

ing operations unserialized writes.

To detect unserializability, we need information about

the completion time of each write. Unfortunately, a user-

level program cannot know exactly when its operations

are performed. Given command queueing, even an ex-

ternal process monitoring the SATA bus cannot pin down

the exact time of a write, but merely when it was issued

and when the acknowledgement of its completion was

sent. Instead of using a single atomic moment, we make

use of the time when the records were created, which is

immediately before they are written to disk (also referred

to as thier “generating time”), to derive the completion

partial order of synchronous writes conservatively. For

example, in Figure 4, thread A generates and commits

two records (A1 and A2) in order. The completion time

of A1 (i.e., A1′) must be bounded by the generating

times of A1 and A2 since they are synchronous and

ordered within one thread. In other words, there is a

happens-before relation among these operations within

one thread. Similarly, B1 happens before B1′ which

happens before B2. Cross-thread, the system time gives

us a partial happens-before relation. Figure 4 (a) shows

how this partial order may allow two writes to happen

“at the same time”, while (b) shows completion times

A1′ and B1′ unambiguiously ordered.

For efficiency reasons, we do not store timestamps off

of test device and thus must get them from the recovered

device. Because records may be legitimatly overwritten,

this means we must be even more conservative in our es-

timates of when an operation happens. If no record is

found for an operation, which prevents us from just di-

rectly retrieving its timestamp, we fall back to using the

(inferred) timestamp of the previous operation belonging

to the same thread or the start of the test if no such oper-

ation occurred.

Given a set of operations and ordering/duration infor-

mation about them, we can determine if the result read at

the end is consistent with a serializable execution of the

operations (e.g., using the algorithms of Golab et al. [8]).

Given the information we have available, it is not pos-

sible in general to determine which writes, if any, were

unserialized: consider observing order A3 A1 A2; is A3

reordered early or are both A1 and A2 reordered late?

We can, however, determine the minimal number of un-

serialized writes that must have occurred (1 here). More

precisely, our algorithm conservatively detects serializa-

tion errors, each of which must have been caused by at

least one different unserialized write. Some serialization

errors may actually have been caused by multiple unseri-

alized writes and some unserialized writes may not have

caused detectable serialization errors. We thus provide

a lower bound on the number of unserialized writes that

must have occurred.

Our algorithm works roughly as follows: the record

format allows us to reconstruct the full operation stream

(who wrote what where). One thread at a time, we con-

sider that thread’s operations until the last one of its op-

erations visible on disk (we presume later writes sim-

ply were not issued/occurred after the power fault) and

examine the locations to which they wrote. We expect

to see the result of one of (1) the operation we are ex-

amining, (2) an unambiguiously later operation, as per

the happens-before relations we can establish from the

timestamps in the observed records, (3) an unambigu-

iously earlier operation, or (4) an operation that could

have happened “at the same time”. We count instances

of the third case as serialization errors. The actual algo-

rithm is somewhat more complicated; we omit the details

and correctness argument for space reasons.

3.3 Applying Workloads

The main goal of applying workloads to each SSDs for

this work is to trigger as many internal operations as pos-

6
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sible. To this end, we design three types of workloads:

concurrent random writes, concurrent sequential writes,

and single-threaded sequential writes.

Let us first consider concurrent random writes. The

garbage collector in the FTL usually maintains an allo-

cation pool of free blocks, from which the new write re-

quests can be served immediately. From this point of

view, the access pattern (i.e., random or sequential) of

the workloads does not matter much in terms of perfor-

mance. However, in the case of sequential writes the

FTL may map a set of continuous logical addresses to a

set of continuous physical pages. This continuous map-

ping has two benefits: first, it can reduce the amount

of space required by the mapping table, and, second, it

makes garbage collection easier since the continuous al-

location requires fewer merging operations of individual

pages. By comparison, randomwrites may scatter to ran-

dom pages, which could lead to moremerging operations

when recycling blocks. We thus consider random writes

the most stressful workload for a SSD.

To make the random write workload even more stress-

ful, we use concurrent threads to fully exercise the in-

ternal parallelism of a SSD. More specifically, we use a

number of worker threads to write records to the SSD

concurrently. Each worker thread is associated with a

unique seed. The seed is fed into a random number gen-

erator to generate the address of each record, which de-

termines the location that record should be written to.

The worker thread writes the record to the generated ad-

dress, and then continues on to generate the next record.

In this way, multiple workers keep generating and writ-

ing records to random addresses of the SSD.

The second type of workload is concurrent sequen-

tial writes. As mentioned above, the sequential pattern

may trigger a FTL sequential mapping optimization. In

the concurrent sequential workload, each worker thread

writes records sequentially, starting from a random ini-

tial address. In other words, there are several interleaved

streams of sequential writes, each to a different section of

the SSD. Advanced SSDs have multiple levels of paral-

lelism internally, and may detect this kind of interleaved

pattern to make full use of internal resources.

The third type of workload is single-threaded sequen-

tial writes. Some low-end SSDs may not be able to detect

the interleaved access pattern of the concurrent sequen-

tial writes workload. As a result, the concurrent sequen-

tial writes may appear as random writes from these de-

vices’ point of view. So we designed the single-threaded

sequential workload to trigger the internal sequential op-

timization, if any, of these devices. Specifically, in this

workload there is only one worker thread generating and

writing records to continuous addresses of the SSD.

Figure 5: The hardware used to cut power in our experi-

ments

3.4 Power Fault Injection

While the worker threads are applying a workload to

stress a SSD, the fault injection component, which we

call the Switcher, cuts off the power supply to the SSD

asynchronously to introduce a sudden power loss.

The Switcher includes two parts: a custom hardware

circuit and the corresponding software driver. The cus-

tom circuit controls the power supply to the SSD under

test, which is independent from the power supply to the

host machine. Figure 5 shows a photograph of the con-

trol circuit. This separation of power supplies enables us

to test the target device intensively without jeopardizing

other circuits in the host systems. The software part of

the Switcher is used to send commands to the hardware

circuit to cut off the power during workload application,

and to turn the power back on later to allow recovery and

further checking. In this way, we can cut the power and

bring it back automatically and conveniently.

In order to cut off power at different points of the

SSDs’ internal operations, we randomize the fault injec-

tion time for each different testing iteration. More specif-

ically, in each iteration of testing we apply workloads

for a certain amount of time (e.g., 30 seconds). Within

this working period, we send the command to cut off the

power at a random point of time (e.g., at the 8th second

of the working period). Since SSD internal operations

are usually measurable in milliseconds, the randomized

injection time in seconds may not make much difference

in terms of hitting one particular operation during power

loss. However, the randomized injection points change

the number of records that have been written before the

power fault, and thus affect whether there are sufficient

writes to trigger certain operations (e.g., garbage collec-

tion). By randomizing the fault injection time, we test

the SSD under a potentially different working scenario

each iteration.
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Figure 6: Framework for testing SSDs using injected

power faults.

3.5 Putting It Together

This section briefly summarizes the work flow of our

proposed framework. As shown in Figure 6, there are

four major components: Worker, Switcher, Checker, and

Scheduler.

The Scheduler coordinates the whole testing proce-

dure. Before workloads are applied, it first selects one

Worker to initialize the whole device by sequentially fill-

ing in the SSD with valid records. This initialization

makes sure the mapping table of the whole address space

is constructed. Also, it is easier to trigger background

garbage collection operations if all visible blocks of the

SSD (there may be extra non-visible blocks if the SSD

has been over provisioned) are filled with valid data. Ad-

ditionally, the full initialization allows us to detect bad

SSD pages.

After the initialization, the Scheduler schedules the

Workers to apply workloads to the SSD for a certain

working period (e.g., 30 seconds). Meanwhile, the

Switcher waits for a random amount of time within the

working period (e.g., 8 seconds) and then cuts down

the power supply to the SSD. Note that Workers keep

working for several seconds after the injected power fail-

ure; this design choice guarantees that the power fault

is injected when the SSD is being actively exercise by

a workload. Of course, the I/O requests after the power

fault only return I/O errors, and do not effect the SSD.

After this delay, the Scheduler stops theWorkers, and the

power is brought back up again by the Switcher. Then,

the Checker reads the records present on the restarted

SSD, and checks the correctness of the device state based

on these records. All potential errors found are written to

logs at this stage.

The testing procedure is executed iteratively. After the

checking, the next iteration starts with the Scheduler se-

lecting one Worker to initialize the device again. In this

way, a device can be tested repeatedly.

Device Vendor Price Type Year P?

ID -Model ($/GB)

SSD#1 A-1 0.88 MLC ’11 N

SSD#2 B 1.56 MLC ’10 N

SSD#3 C-1 0.63 MLC ’11 N

SSD#4 D-1 1.56 MLC ’11 -

SSD#5 E-1 6.50 SLC ’11 N

SSD#6 A-2 1.17 MLC ’12 Y

SSD#7 E-2 1.12 MLC ’12 Y

SSD#8 A-3 1.33 MLC ’11 N

SSD#9 A-3 1.33 MLC ’11 N

SSD#10 A-2 1.17 MLC ’12 Y

SSD#11 C-2 1.25 MLC ’11 N

SSD#12 C-2 1.25 MLC ’11 N

SSD#13 D-1 1.56 MLC ’11 -

SSD#14 E-1 6.50 SLC ’11 N

SSD#15 E-3 0.75 MLC ’09 Y

HDD#1 F 0.33 5.4K ’08 -

HDD#2 G 1.64 15K - -

Table 3: Characteristics of the devices used in our ex-

periments. ”Type” for SSDs means the type of the flash

memory cell while for HDDs it means the RPM of the

disk. ”P” indicates presence of some power-loss protec-

tion (e.g. a super capacitor).

4 Experimental Environment

4.1 Block Devices

Out of the wide variety of SSDs available today, we

selected fifteen representative SSDs (ten different mod-

els) from five different vendors.3The characteristics of

these SSDs are summarized in Table 3. More specif-

ically, the prices of the 15 SSDs range from low-end

(e.g., $0.63/GB) to high-end (e.g., $6.50/GB), and the

flash memory chips cover both multi-level cell (MLC)

and single-level cell (SLC). Based on our examination

and manufacturer’s statements, four SSDs are equipped

with power-loss protection. For comparison purposes,

we also evaluated two traditional hard drives, including

one low-end drive (5.4K RPM) and one high-end drive

(15K RPM).

4.2 Host System

Our experiments were conducted on a machine with a

Intel Xeon 5160 3.00 GHz CPU and 2 GB of main mem-

ory. The operating system is Debian Linux 6.0 with Ker-

nel 2.6.32. The SSDs and the hard drives are individually

connected to a LSI Logic SAS1064 PCI-X Fusion-MPT

3Vendor names are blinded; we do not intend to “name-and-shame”.
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Device ID SSD#1 SSD#2 SSD#3 SSD#4 SSD#5 SSD#6 SSD#7 SSD#8 SSD#9

# of Faults 136 1360 8 186 105 105 250 200 200

Device ID SSD#10 SSD#11 SSD#12 SSD#13 SSD#14 SSD#15 HDD#1 HDD#2 -

# of Faults 100 151 100 100 233 103 1 24 -

Table 4: Number of faults applied to each device during concurrent random writes workload.

Failure Seen? Devices exhibiting that failure

Bit Corruption Y SSD#11, SSD#12, SSD#15

Flying Writes N -

Shorn Writes Y SSD#5, SSD#14, SSD#15

Unserializable Writes Y SSD#2, SSD#4, SSD#7, SSD#8, SSD#9, SSD#11, SSD#12, SSD#13, HDD#1

Metadata Corruption Y SSD#3

Dead Device Y SSD#1

None Y SSD#6, SSD#10, HDD#2

Table 5: Summary of observations. “Y” means the failure was observed with any device, while “N” means the failure

was not observed.

SAS Controller. The power supply to the SSDs is con-

trolled by our custom circuit, which is connected to the

host machine via its serial port.

To explore the block-level behavior of the devices and

minimize the interference of the host system, the SSDs

and the hard drives are used as raw devices: that is, no

file system is created on the devices. We use synchro-

nized I/O (O SYNC), which means each write operation

does not return until its data is flushed to the device. By

inspection, this does cause cache flush commands to be

issued to the devices. Further, we set the I/O scheduler to

noop and specify direct I/O (O DIRECT) to bypass the

buffer cache.

5 Experimental Examinations

We examined the behavior of our selected SSDs under

three scenarios: (1) power fault during concurrent ran-

dom writes, (2) power fault during concurrent sequen-

tial writes, and (3) power fault during single-threaded se-

quential writes.

For each scenario, we perform a certain number of

testing iterations. Each iteration injects one power fault

into the target device. Since the workload of concur-

rent random writes is the most stressful to the SSDs, we

conducted most tests using this workload type. Table 4

summarizes the total numbers of power faults we have

injected into each device during the workload of concur-

rent randomwrites. As shown in the table, we have tested

more than 100 power faults on each of the SSDs, ex-

cept for SSD#3, which exhibited non-recoverable meta-

data corruption after a mere eight power faults (see Sec-

tion 5.5 for more details).

As for the other two workloads, we conducted a rela-

tively small number of tests (i.e., each workload 20 times

on two drives). One drive did not show any abnormal be-

havior with these workloads, while the other exhibited

similar behavior as with the concurrent random work-

load. This verifies that concurrent random writes is the

most stressful workload for most SSDs, making them

more susceptible to failures caused by power faults. In

this section, we accordingly focus on analyzing the re-

sults exposed by power failures during concurrent ran-

dom writes.

5.1 Overall Results

Table 5 shows the summarized results. In our experi-

ments, we observed five out of the six expected failure

types, including bit corruption, shorn writes, unserializ-

able writes, metadata corruption, and dead device. Sur-

prisingly, we found that 13 out of 15 devices exhibit fail-

ure behavior contrary to our expectation. This result sug-

gests that our proposed testing framework is effective in

exposing and capturing the various durability issues of

SSDs under power faults.

Every failed device lost some amount of data or be-

came massively corrupted under power faults. For ex-

ample, three devices (SSDs no. 11, 12, and 15) suffered

bit corruption, three devices (SSDs no. 5, 14, and 15)

showed shorn writes, and many SSDs (no. 2, 4, 7, 8, 9,

11, 12, and 13) experienced serializability errors. The

most severe failures occurred with SSD#1 and SSD#3.

In SSD#3, about one third of data was lost due to one

9
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Figure 7: Two examples of shorn writes observed.

third of the device becoming inaccessible. As for SSD#1,

all of its data was lost when the whole device became

dysfunctional. These two devices manifested these unre-

coverable problems before we started serializability ex-

periments on them so we could not include them in our

serializability evaluation.

In the following sections, we discuss each observed

failure and provide our analysis on possible reasons be-

hind the observations. The only failure we did not ob-

serve is flying writes, which indicates that the FTLs are

capable of keeping a consistent mapping between logical

and physical addresses.

5.2 Bit Corruption

We observed random bit corruption in three SSDs. This

finding suggests that the massive chip-level bit errors

known to be caused by power failures in flash chips [26]

cannot be completely hidden from the device-level in

some devices. One common way to deal with bit errors

is using ECC. However, by examining the datasheet of

the SSDs, we find that two of the failed devices have

already made use of ECC for reliability. This indicates

that the number of chip-level bit errors under power fail-

ure could exceed the correction capability of ECC. Some

FTLs handle these errors by returning the old value of

the page [19]. However, this could lead to unserializable

writes.

5.3 Shorn Writes

In our experiments, we use 4 KB as the the default record

size, which is the typical block size used in the kernel.

We did not expect a shorn write within a 4 KB record

should or could occur for two reasons: First, 4 KB is

the common block size used by the kernel as well as the

page size used in the SSDs (which can be protected by

the associated ECC). In other words, most drives use a

4 KB programming unit, which would not allow shorn

writes to occur within a 4 KB block. Second, SSDs usu-

ally serve a write request by sending it to a newly erased

block whose location is different from the location that
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Figure 8: Average number of serialization errors ob-

served per power fault for each SSD. The x-axis shows

the devices from cheapest unit price ($/GB) to most ex-

pensive.

stores the old data so a partially new and partially old

record is unlikely to appear.

Contrary to our expectations, we observed shorn

writes on three drives: SSDs no. 5, 14, and 15. Among

the three, SSD#5 and SSD#14 are the most expen-

sive ones—supposedly “enterprise-class”—in our exper-

iments. Figure 7 shows two examples of shorn-write pat-

terns observed. In pattern #1, the first 3,584 bytes of the

block are occupied by the content from a new record,

while the remaining 512 bytes are from an old record. In

pattern #2, the first 1536 bytes are new, and the remain-

ing 2,560 bytes are old. In all patterns observed, the size

of the new portion is a multiple of 512 bytes. This is an

interesting finding indicating that some SSDs use a sub-

page programming technique internally that treats 512

bytes as a programming unit, contrary to manufacturer

claims. Also, a 4 KB logical record is mapped to multi-

ple 512-byte physical pages. As a result, a 4 KB record

could be partially updated while keeping the other part

unchanged.

In the 441 testing iterations on the three drives, we

observed 72 shorn writes in total. This shows that shorn

writes is not a rare failure mode under power fault. More-

over, this result indicates even SLC drives may not be

immune to shorn writes since two of these devices use

SLC.

5.4 Unserializable Writes

We have detected unserializable writes in eight tested

SSDs, including no. 2, 4, 7, 8, 9, 11, 12, and 13. Fig-

ure 8 shows the average number of serialization errors

observed per power fault for each SSD. Each serializa-

tion error implies at least one write was dropped or mis-

ordered. The SSDs are sorted in the increasing order of
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testing iteration for selected SSDs.

their cost per capacity ($/GB) from left to right. No rela-

tionship between the number of serialization errors and

a SSD’s unit price stands out except for the fact that the

most expensive SLC drives, SSD#5 and SSD#14, did not

exhibit any serialization errors.

Figure 9 shows how the number of serialization errors

observed per power fault varied over time for selected

SSDs. Notice that SSD#2 and SSD#4 had hundreds of

serialization errors result from each fault. In our exper-

iments, the kernel is made to send commands to the de-

vice being tested to flush its write cache at the end of

each write request, so a write should be committed on

the device before returning. In spite of this, we still ob-

served a large number of serialization errors. This sug-

gests that these SSDs do not try to commit writes imme-

diately as requested by the kernel. Instead, they probably

keep most of the recent write requests in volatile buffers

for performance reasons. On the other hand, SSDs no. 7,

8, and 11 have only a very small number of serialization

errors during power faults, suggesting that those SSDs

try to commit most of their write requests on time.

Several correlated device design choices may con-

tribute to the serialization errors observed. First, the de-

vices may make extensive use of on-drive cache mem-

ory and ignore the flush requests from the kernel as dis-

cussed above. As a result, writes in the device’s cache

will not survive a power fault if one occurs. Second,

the devices serve write requests in parallel. Therefore, a

write request committed later does not necessarily guar-

antee that an earlier write request is committed safely.

This counter-intuitive behavior can lead to severe prob-

lems in higher-level storage components.

In a serialization error, a write could be either have

its result overwritten by an earlier write or simply be

lost. We see three possible scenarios that might cause

a lost write: First, the write may not have been com-

pletely programmed into the flash memory at the time

of the fault. The program operation for NAND flash

may take several program-read-verify iterations before

the flash memory page reaches the desired state. This it-

erative procedure could be interrupted by a power fault

leaving the page under programming in an invalid state.

Upon restart, the FTL can identify the page as invalid us-

ing the valid/invalid bit of the metadata associated with

the page, and thus continue to map the logical address

being written to the page that contains the old version of

the data.

Second, the data to be written may have been success-

fully programmed into the flash memory before exhaust-

ing the emergency power, but the FTL did not get around

to updating the page’s valid/invalid bit to valid. As a re-

sult, the mapping table of the recovered device still maps

the written address to the old page even though the new

data has been saved in the flash memory.

Third, the data may have been successfully pro-

grammed into the flash memory and the page may have

been marked as valid, but the page that contains the old

record may not have been marked as invalid. As a result,

in the restarted device there are two valid pages for the

same logical address. When rebuilding the mapping ta-

ble, the FTL may be unable to distinguish them and thus

may fail to recognize the new page as the correct one. It

may thus decide to keep the old one and mark the new

one as invalid. It is possible to solve this problem by

encoding version information into pages’ metadata [6].

5.5 Metadata Corruption

SSD#3 exhibited an interesting behavior after a small

number (8) of tests. SSD#3 has 256 GB of flash mem-

ory visible to users, which can store 62,514,774 records

in our experimental setting. However, after 8 injected

power faults, only 69.5% of all the records can be re-

trieved from the device. In other words, 30.5% of the

data (72.6 GB) was suddenly lost. When we try to access

the device beyond the records we are able to retrieve, the

process hangs, and the I/O request never returns until we

turn off the power to the device.

This corruption makes 30.5% of the flash memory

space unavailable. Since it is unlikely that 30.5% of

the flash memory cells with contiguous logical addresses

are broken at one time, we assume corruption of meta-

data. One possibility is that the metadata that keeps

track of valid blocks is messed up. Regardless, about

one third of the blocks are considered as bad sectors.

Moreover, because the flash memory in SSDs is usually

over-provisioned, it is likely that a certain portion of the

over-provisioned space is also gone.
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5.6 Dead Device

Our experimental results also show total device failure

under power faults. In particular, SSD#1 “bricked”—

that is, can no longer be detected by the controller—and

thus became completely useless. All of the data stored

on it was lost. Although the dysfunction was expected,

we were surprised by the fact that we have only injected

a relatively small number of power faults (136) into this

device before it became completely dysfunctional. This

suggests that some SSDs are particularly susceptible to

power faults.

The dead device we observed could be the result of ei-

ther an unrecoverable loss of metadata (e.g., the whole

mapping table is corrupted), or hardware damage due to

irregular voltage (e.g., a power spike) during the power

loss. To pinpoint the cause, we measured the current

at the interface of the dead drive. It turns out that the

“bricked” device consumes a level of power similar to a

normal device. This suggests that part of the function-

ality of device is still working, although the host cannot

detect it at all.

5.7 Comparison with Hard Drives

For comparison purposes, we also evaluated the reliabil-

ity of two hard drives under power faults. Hard drive I/O

operations are much slower than that of SSDs. Accord-

ingly, due to limited time, we applied only a few tests to

HDD#1 and HDD#2.

Our testing framework detects unserializable writes

with HDD#1, too. This indicates that some low-end hard

drives may also ignore the flush requests sent from the

kernel. On the other hand, HDD#2 incurred no failures

due to power faults. This suggests that this high-end hard

drive is more reliable in terms of power fault protection.

6 Related Work

Characteristic studies of flash devices. Many studies

have been conducted on different aspects of flash mem-

ory devices [10, 26, 11]. Among them, Tseng et al. [26]

is most closely related to ours. Tseng et al. studied

the impact of power loss on flash memory chips. They

find among other things that flash memory operations do

not necessarily suffer fewer bit errors when interrupted

closer to completion. Such insightful observations are

helpful for SSD vendors to design more reliable SSD

controllers. Indeed, we undertook this study as the obvi-

ous next step. However, unlike their work that is focused

on the chip level, we study the device-level behavior of

SSDs under power faults. Since modern SSDs employ

various mechanisms to improve the device-level reliabil-

ity, chip-level failures may be masked at the device level.

Indeed, our study reveals that their simplest failure, bit

corruption, rarely appears in full-scale devices.

Bug detection in storage systems. EXPLODE uses

model checking to find errors in storage systems [27].

It systematically explores every possible execution path

of the systems in order to detect subtle bugs. In each pos-

sible state of the execution, EXPLODE emulates the ef-

fect of a crash by committing a subset of the dirty blocks

onto disk, running the system’s recovery code, and then

checking the consistency of the recovered system. Our

work has similar goals as EXPLODE, but we focus on

block devices rather than file systems. Additionally, we

focus on power faults instead of non-fail–stop corrup-

tion errors. Furthermore, EXPLODE uses RAM disks

as the lowest storage component in experiments, while

we study the behavior of real SSD hardware.

Consistency checking of file systems. Much effort has

been put towards analyzing the consistency of file sys-

tems and designing robust file systems. Prabhakaran

et al. [20] analyze the failure policies of four commod-

ity file systems and propose the IRON file system, a

robust file system with a family of recovery techniques

implemented. Fryer et al. [5] transform global consis-

tency rules to local consistency invariants, and provide

fast runtime consistency checking to protect a file system

from buggy operations. Chidambaram et al. [3] intro-

duce a backpointer-based No-Order File System (NoFS)

to provide crash consistency. Unlike these studies, our

framework bypasses the file system and directly tests the

block-level behavior of SSDs. Further, these studies all

look to design file systems that are robust to failure while

we look to determine what failures actually occur. It

would be interesting to test each of these filesystems un-

der our testing framework.

Reliability analysis of mechanical hard disks.

Schroeder et al. [23] analyze the disk replacement data

of seven production systems over five years. They find

that the field replacement rates of system disks were

significantly larger than what the datasheet MTTFs sug-

gest. In his study of RAID arrays, Gibson [7] proposes

the metricMean Time To Data Loss (MTTDL) as a more

meaningful metric than MTTF; whether or not MTTDL

is the ideal metric is somewhat disputed [9]. Regardless,

we report simply the number of failures we observed

while purposefully faulting the drives; a separate study

observing in-the-wild failures would also be interesting.

7 Conclusions

This paper proposes a methodology to automatically ex-

pose the bugs in block devices such as SSDs that are trig-

gered by power faults. We apply effective workloads to

stress the devices, devise a software-controlled circuit to
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actually cut the power to the devices, and check for vari-

ous failures in the repowered devices. Based on our care-

fully designed record format, we are able to detect six

potential failure types. Our experimental results with fif-

teen SSDs from five different vendors show that most of

the SSDs we tested did not adhere strictly to the expected

semantics of behavior under power faults. We observed

five out of the six expected failure types, including bit

corruption, shorn writes, unserializable writes, metadata

corruption, and dead device. Our framework and experi-

mental results should help design new robust storage sys-

tem against power faults.

The block-level behavior of SSDs exposed in our ex-

periments has important implications for the design of

storage systems. For example, the frequency of both bit

corruption and shorn writes make update-in-place to a

sole copy of data that needs to survive power failure inad-

visable. Because many storage systems like filesystems

and databases rely on the correct order of operations to

maintain consistency, serialization errors are particularly

problematic. Write ahead logging, for example, works

only if a log record reaches persistent storage before the

updated data record it describes. If this ordering is re-

versed or only the log record is dropped then the database

will likely contain incorrect data after recovery because

of the inability to undo the partially completed transac-

tions aborted by a power failure.

Because we do not know how to build durable sys-

tems that can withstand all of these kinds of failures, we

recommend system builders either not use SSDs for im-

portant information that needs to be durable or that they

test their actual SSDmodels carefully under actual power

failures beforehand. Failure to do so risks massive data

loss.
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