Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Fence: Protecting Device Availability With Uniform Resource Control
Tweet

connect with us

Fence: Protecting Device Availability With Uniform Resource Control

Authors: 

Tao Li and Albert Rafetseder, New York University; Rodrigo Fonseca, Brown University; Justin Cappos, New York University

Abstract: 

Applications such as software updaters or a run-away web app, even if low priority, can cause performance degradation, loss of battery life, or other issues that reduce a computing device’s availability. The core problem is that OS resource control mechanisms unevenly apply uncoordinated policies across different resources. This paper shows how handling resources – e.g., CPU, memory, sockets, and bandwidth – in coordination, through a unifying abstraction, can be both simpler and more effective. We abstract resources along two dimensions of fungibility and renewability, to enable resource-agnostic algorithms to provide resource limits for a diverse set of applications.

We demonstrate the power of our resource abstraction with a prototype resource control subsystem, Fence, which we implement for two sandbox environments running on a wide variety of operating systems (Windows, Linux, the BSDs, Mac OS X, iOS, Android, OLPC, and Nokia) and device types (servers, desktops, tablets, laptops, and smartphones). We use Fence to provide systemwide protection against resource hogging processes that include limiting battery drain, preventing overheating, and isolating performance. Even when there is interference, Fence can double the battery life and improve the responsiveness of other applications by an order of magnitude. Fence is publicly available and has been deployed in practice for five years, protecting tens of thousands of users.

Tao Li, New York University

Albert Rafetseder, New York University

Rodrigo Fonseca, Brown University

Justin Cappos, New York University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {190482,
author = {Tao Li and Albert Rafetseder and Rodrigo Fonseca and Justin Cappos},
title = {Fence: Protecting Device Availability With Uniform Resource Control},
booktitle = {2015 USENIX Annual Technical Conference (USENIX ATC 15)},
year = {2015},
isbn = {978-1-931971-225},
address = {Santa Clara, CA},
pages = {177--191},
url = {https://www.usenix.org/conference/atc15/technical-session/presentation/li},
publisher = {USENIX Association},
month = jul,
}
Download
Li PDF
Li PDF (Updated 6/29/15)
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us