
Fence: Protecting Device Availability
With Uniform Resource Control

Tao Li†, Albert Rafetseder†, Rodrigo Fonseca∗,
Justin Cappos†

†New York University ∗Brown University

1

Motivation

2

Motivation

3

● DropBox sync
● Browser tabs
● Virus scan
● Software updates
● ...

Typical Causes

4

● Control performance, battery, heat, etc.
○ Do not kill -- useful-but-gluttonous apps

● Do not require OS / hardware changes
○ Applicable to sandboxes, browsers, etc.
○ Run everywhere (Linux, Windows, Mac, Android, OpenWrt, etc.)

● Focus on mechanism
○ Necessary for policies to function

Goal: Performance Isolation

5

● Multiple contended resources
○ Separate mechanisms / policies
○ Creating an overarching policy is difficult

● Some controls are missing
○ Gaps in enforcement -> lack of isolation

● Legacy systems tend to be work-preserving

Why is performance isolation hard?

6

● Unifying resource abstraction
○ Two axes per resource: fungible/renewable

■ Fully defines mechanism
○ Easy to cover new resources
○ Easy to implement policies

Key Idea: Uniform Resource Control

7

● Fungible:
○ Are items of this type interchangeable?

■ Yes (disk space) vs No (TCP port)

● Renewable:
○ Are items replenished over time?

■ Yes (Network bandwidth) vs No (RAM)

Resource Abstraction Questions

8

Resource Controls

is_item_allowed()
“Check if permitted”
e.g. UDP port

tattle_add_item()
tattle_remove_item()
“Restrict total used”
e.g. File Descriptors

tattle_quantity()
“Rate limit”
e.g. Network b/w

tattle_quantity()
“Rate limit”
e.g. CPU

Not Fungible Fungible

N
ot

 R
en

ew
ab

le
R

en
ew

ab
le

9

● Polling
○ Find value, stop / rate limit if over

■ e.g. CPU uses job control interface
(SIGSTOP / SIGCONT)

● Interposition
○ API code changes to add interposition

● Which depends on implementation

Enforcement mechanism

10

def sendmessage(destip,destport,msg,localip,localport): # 117 lines
 ...

 # get the OS's UDP socket
 sock = _get_udp_socket(localip, localport)

 # Send this UDP datagram
 bytessent = sock.sendto(msg, (destip, destport))

 ...

Example Implementation Changes

11

def sendmessage(destip,destport,msg,localip,localport): # 117 lines + 10 lines
 ...
 # check that we are permitted to use this port...
 if not fence.is_item_allowed('UDPport',localport):
 raise ResourceAccessDenied('...')
 # get the OS's UDP socket
 sock = _get_udp_socket(localip, localport)

 # Send this UDP datagram
 bytessent = sock.sendto(msg, (destip, destport))

 ...

Example Implementation Changes

UDP port: Non-fungible,
non-renewable

12

def sendmessage(destip,destport,msg,localip,localport): # 117 lines + 10 lines
 ...
 # check that we are permitted to use this port...
 if not fence.is_item_allowed('UDPport',localport):
 raise ResourceAccessDenied('...')
 # get the OS's UDP socket
 sock = _get_udp_socket(localip, localport)
 # Register this socket descriptor with fence
 fence.tattle_add_item('outsocketsopened', id(sock))
 # Send this UDP datagram
 bytessent = sock.sendto(msg, (destip, destport))

 ...

Example Implementation Changes

socket: Fungible, non-
renewable

13

def sendmessage(destip,destport,msg,localip,localport): # 117 lines + 10 lines
 ...
 # check that we are permitted to use this port...
 if not fence.is_item_allowed('UDPport',localport):
 raise ResourceAccessDenied('...')
 # get the OS's UDP socket
 sock = _get_udp_socket(localip, localport)
 # Register this socket descriptor with fence
 fence.tattle_add_item('outsocketsopened', id(sock))
 # Send this UDP datagram
 bytessent = sock.sendto(msg, (destip, destport))
 # Account for the network bandwidth utilized
 if _is_loopback_ipaddr(destip):
 fence.tattle_quantity('loopbacksend', bytessent + 64)
 else:
 fence.tattle_quantity('internetsend', bytessent + 64)
 ...

Example Implementation Changes

Network b/w: Fungible,
Renewable

14

● Seattle Testbed’s Repy sandbox
○ Seattle ~= Peer-to-peer PlanetLab
○ Tens of thousands of diverse devices

● Lind
○ NaCl / POSIX sandbox

● Sensibility Testbed
○ Privacy preserving sensing on Android

Uses of Fence

15

● Resource consumption must be visible
○ HW / OS hide info

● Minimizes performance impact
○ “Worst case” limits

● Scope of policies
○ Unclear how complete Fence is
○ Worked for us in practice

Limitations

16

● How well does Fence work vs legacy controls?
● How well does Fence work across platforms?
● How much overhead does Fence incur?
● Can realistic policies be expressed in Fence?
● How diverse of resources can be metered?
● How hard is it to add resources to Fence?

Evaluation

17

● How well does Fence work vs legacy controls?
● How well does Fence work across platforms?
● How much overhead does Fence incur?
● Can realistic policies be expressed in Fence?
● How diverse of resources can be metered?
● How hard is it to add resources to Fence?

Evaluation

18

● Video on disk (Dell
Inspirion 630m w/ Ubuntu
10.04)

● “hog” everything

● worst setting for hog

● best setting for video

Fence vs Legacy Controls

19https://www.youtube.com/watch?v=OGe8QpPbtz4

http://www.youtube.com/watch?v=OGe8QpPbtz4

● Heat / battery

● “hog” everything

Fence vs Legacy Heat / Battery

20

● Heat / battery

● “hog” everything

Fence vs Legacy Heat / Battery

21

● Heat / battery

● “hog” everything

Fence vs Legacy Heat / Battery

22

● Heat / battery

● “hog” everything

Fence vs Legacy Heat / Battery

23

● Heat / battery

● “hog” everything

Fence vs Legacy Heat / Battery

24

● How well does Fence work vs legacy controls?
● How well does Fence work across platforms?
● How much overhead does Fence incur?
● Can realistic policies be expressed in Fence?
● How diverse of resources can be metered?
● How hard is it to add resources to Fence?

Evaluation

25

Power draw policy from Cinder [Roy Eurosys 2011]
Stores energy w/ a tap (token bucket)
Polling using ACPI (updates every 15 seconds)

Program: Richards benchmark in a run / sleep cycle

Expressing Policies: Cinder

26

Expressing Policies: Cinder (cont)

27

Expressing Policies: Cinder (cont)

28

Expressing Policies: Cinder (cont)

29

150 LOC!

● Performance isolation is still a challenge

● Uniform Resource Control
○ Same simple reasoning for all resources
○ Fungible / Renewable
○ Easy to implement / use
○ Effective in practice

Conclusion

30

● Secure software distribution

○ Adoption by Python, Ruby, Docker, LEAP,
CoreOS, Go, Rust, Haskell, OCaml, etc.

○ Plausible standard for many new domains

● Hiring Post Doc / Research Professor / Dev

NYU is Hiring!

31

Questions?

32

<20% frames for each
legacy tool
(Combining tools, only
gives 22% of frames)

99% of frames for
Fence

Fence vs Legacy Controls (cont)

33

Example Resource Categorization

UDP ports
TCP ports

Threads
Memory (RAM)
Storage Space
Open Sockets
Open Files

Network read / write CPU
File read / write
HW random

Not Fungible Fungible

N
ot

 R
en

ew
ab

le
R

en
ew

ab
le

34

