VeriZexe: Decentralized Private Computation with Universal Setup

Authors: 

Alex Luoyuan Xiong, Espresso Systems, National University of Singapore; Binyi Chen and Zhenfei Zhang, Espresso Systems; Benedikt Bünz, Espresso Systems, Stanford University; Ben Fisch, Espresso Systems, Yale University; Fernando Krell and Philippe Camacho, Espresso Systems

Abstract: 

Traditional blockchain systems execute program state transitions on-chain, requiring each network node participating in state-machine replication to re-compute every step of the program when validating transactions. This limits both scalability and privacy. Recently, Bowe et al. introduced a primitive called decentralized private computation (DPC) and provided an instantiation called Zexe, which allows users to execute arbitrary computations off-chain without revealing the program logic to the network. Moreover, transaction validation takes only constant time, independent of the off-chain computation. However, Zexe required a separate trusted setup for each application, which is highly impractical. Prior attempts to remove this per-application setup incurred significant performance loss.

We propose a new DPC instantiation VeriZexe that is highly efficient and requires only a single universal setup to support an arbitrary number of applications. Our benchmark improves the state-of-the-art by 9x in transaction generation time and by 3.4x in memory usage. Along the way, we also design efficient gadgets for variable-base multi-scalar multiplication and modular arithmetic within the Plonk constraint system, leading to a Plonk verifier gadget using only ∼ 21k Plonk constraints.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {287141,
author = {Alex Luoyuan Xiong and Binyi Chen and Zhenfei Zhang and Benedikt B{\"u}nz and Ben Fisch and Fernando Krell and Philippe Camacho},
title = {{VeriZexe}: Decentralized Private Computation with Universal Setup},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {4445--4462},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/xiong},
publisher = {USENIX Association},
month = aug
}

Presentation Video