
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

VeriZexe: Decentralized Private Computation
with Universal Setup

Alex Luoyuan Xiong, Espresso Systems, National University of Singapore;
Binyi Chen and Zhenfei Zhang, Espresso Systems; Benedikt Bünz, Espresso
Systems, Stanford University; Ben Fisch, Espresso Systems, Yale University;

Fernando Krell and Philippe Camacho, Espresso Systems
https://www.usenix.org/conference/usenixsecurity23/presentation/xiong

USENIX’23 Artifact Appendix:
VERIZEXE: Decentralized Private Computation with Universal Setup

Alex Luoyuan Xiong1, Binyi Chen2, Zhenfei Zhang3, Benedikt Bünz4, Ben Fisch5, Fernando Krell6, and
Philippe Camacho7

1,2,3,4,5,6,7Espresso Systems
1National University of Singapore

4Stanford University
5Yale University

April 24, 2023

A Artifact Appendix

A.1 Abstract
We provide the instructions to access and evaluate artifacts
for performance of VERIZEXE system. The artifacts con-
tain a veri-zexe code base written in Rust with benchmark
test suites, and a forked snarkVM code base1 as the state-of-
the-art to compare against. We further specify the hardware
specifications under which our VERIZEXE can successfully
generate transaction in a reasonable time frame thanks to
the massive improvements on prover time and memory us-
age. This demonstrates the practicality of our system even on
resource-limited devices like phones and laptops.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There should be no security risk or privacy leakage of any
kind for evaluators. Executions of the artifacts have no side-
effect outside of the testing folders, nor would the programs
require any privileged system permission to run.

A.2.2 How to access

Our artifacts (software only) are hosted as public reposito-
ries on GitHub. Our implementation of VERIZEXE system is
accessible via:

https://github.com/EspressoSystems/veri-zexe/tree/

42657f254c7f1353914b098dc78f5fb97408bfcd.
The primary prior work that we improve on and benchmark

against is accessible via:
https://github.com/alxiong/snarkVM/tree/

290c05273e3a30523335524fb682ef316cbbf414.
1Modified for fair comparison and faithful instantiation of the original

DPC scheme

A.2.3 Hardware dependencies

We do not require special hardware, and the evaluation can
be run on any Linux machine. To reproduce the same result,
we recommend using Amazon EC2 instances:

Instance Type vCPU Memory Arch Simulating

a1.xlarge 4 8 GB arm64 Phone
c5a.4xlarge 16 32 GB x86_64 Laptop
c5a.16xlarge 64 128 GB x86_64 Server

Table 1: AWS EC2 instance type and hardware spec

A.2.4 Software dependencies

Any Linux distribution will work, and we use Ubuntu 20.04
across all experiments. The only software prerequisite is:
Rust : https://www.rust-lang.org/tools/install.

A.2.5 Benchmarks

None. No external data-set or benchmark model required.

A.3 Set-up

A.3.1 Installation

1. Install software prerequisites listed in ??.

2. Git clone both repos, veri-zexe at https://github.com/
EspressoSystems/veri-zexe.git and snarkVM at https://
github.com/alxiong/snarkVM.

3. For both repos (same procedure), cd into the repo
folder, git checkout to paper-benchmark branch, run
cargo build .

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 265

https://github.com/EspressoSystems/veri-zexe/tree/42657f254c7f1353914b098dc78f5fb97408bfcd
https://github.com/EspressoSystems/veri-zexe/tree/42657f254c7f1353914b098dc78f5fb97408bfcd
https://github.com/alxiong/snarkVM/tree/290c05273e3a30523335524fb682ef316cbbf414
https://github.com/alxiong/snarkVM/tree/290c05273e3a30523335524fb682ef316cbbf414
https://www.rust-lang.org/tools/install
https://github.com/EspressoSystems/veri-zexe.git
https://github.com/EspressoSystems/veri-zexe.git
https://github.com/alxiong/snarkVM
https://github.com/alxiong/snarkVM

A.3.2 Basic Test

Ensure you can compile the source code and test/bench code
by running:

cargo check && cargo test --no-run

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): VERIZEXE improves the state-of-the-art (snarkVM) by
9x in transaction generation time and by 3.4x in memory
usage with small variability across different transaction
dimensions. This is proven by the Experiment (E1 + E2)
described in ?? whose results are reported in Table. 2.

(C2): VERIZEXE is the first DPC scheme to make trans-
action generation possible and practical in resource-
limited hardware environments, such as mobile phones
or consumer-grade laptops. Furthermore, we exhibit a
trade-off between prover time and peak memory usage.
This is proven by the Experiment (E3) desribed in ??
whose results are reported in Table. 4.

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Link explicitly the descrip-
tion of your experiments to the items you have provided in
the previous subsection about Major Claims. Please provide
your estimates of human- and compute-time for each of the
listed experiments (using the suggested hardware/software
configuration above). Follows an example:
(E1): [2 human-minutes + 1.2 computer-minutes + c5a.16xlarge EC2]:

We run benchmarks on veri-zexe across different
transaction dimensions (2x2,3x3,4x4) and measure all
major metrics among which total transaction generation
time and peak memory usage are the main targets.
Preparation: Enter into your AWS c5a.16xlarge EC2
instance, or environments of the same hardware spec
(see Table. ??).
Execution and Result: Please follow detailed instruc-
tions in usenix-ae.md file in the veri-zexe project
root.

(E2): [5 human-minutes + 15 computer-minutes + c5a.16xlarge EC2] We
run benchmarks on snarkVM across different transaction
dimensions (2x2,3x3,4x4) in the same environment
and measuring the same metrics.
Preparation: Enter into your AWS c5a.16xlarge EC2
instance.
Execution and Result: Please follow detailed instruc-
tions in usenix-ae.md file in the snarkVM project root.

(E3): [5 human-minutes + 6 computer-minutes + a1.xlarge & c5a.4xlarge

EC2] We try to generate 2-input-2-output DPC transac-
tion across different hardware environments, especially

resource-limited environment simulating phones and lap-
tops. This used to be impossible for snarkVM due to
high memory usage and much slower prover.
Preparation: Enter into your AWS a1.xlarge and
c5a.4xlarge EC2 instance.
Execution and Result: Please follow detailed instruc-
tions in usenix-ae.md file in the veri-zexe project
root.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

266 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

