Timeless Timing Attacks and Preload Defenses in Tor's DNS Cache


Rasmus Dahlberg and Tobias Pulls, Karlstad University


We show that Tor's DNS cache is vulnerable to a timeless timing attack, allowing anyone to determine if a domain is cached or not without any false positives. The attack requires sending a single TLS record. It can be repeated to determine when a domain is no longer cached to leak the insertion time. Our evaluation in the Tor network shows no instances of cached domains being reported as uncached and vice versa after 12M repetitions while only targeting our own domains. This shifts DNS in Tor from an unreliable side-channel—using traditional timing attacks with network jitter—to being perfectly reliable. We responsibly disclosed the attack and suggested two short-term mitigations.

As a long-term defense for the DNS cache in Tor against all types of (timeless) timing attacks, we propose a redesign where only an allowlist of domains is preloaded to always be cached across circuits. We compare the performance of a preloaded DNS cache to Tor's current solution towards DNS by measuring aggregated statistics for four months from two exits (after engaging with the Tor Research Safety Board and our university ethical review process). The evaluated preload lists are variants of the following top-lists: Alexa, Cisco Umbrella, and Tranco. Our results show that four-months-old preload lists can be tuned to offer comparable performance under similar resource usage or to significantly improve shared cache-hit ratios (2–3x) with a modest increase in memory usage and resolver load compared to a 100 Mbit/s exit. We conclude that Tor's current DNS cache is mostly a privacy harm because the majority of cached domains are unlikely to lead to cache hits but remain there to be probed by attackers.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.