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Abstract
We show that Tor’s DNS cache is vulnerable to a timeless
timing attack, allowing anyone to determine if a domain is
cached or not without any false positives. The attack requires
sending a single TLS record. It can be repeated to determine
when a domain is no longer cached to leak the insertion time.
Our evaluation in the Tor network shows no instances of
cached domains being reported as uncached and vice versa
after 12M repetitions while only targeting our own domains.
This shifts DNS in Tor from an unreliable side-channel—
using traditional timing attacks with network jitter—to being
perfectly reliable. We responsibly disclosed the attack and
suggested two short-term mitigations.

As a long-term defense for the DNS cache in Tor against
all types of (timeless) timing attacks, we propose a redesign
where only an allowlist of domains is preloaded to always
be cached across circuits. We compare the performance of a
preloaded DNS cache to Tor’s current solution towards DNS
by measuring aggregated statistics for four months from two
exits (after engaging with the Tor Research Safety Board and
our university ethical review process). The evaluated preload
lists are variants of the following top-lists: Alexa, Cisco Um-
brella, and Tranco. Our results show that four-months-old
preload lists can be tuned to offer comparable performance un-
der similar resource usage or to significantly improve shared
cache-hit ratios (2–3x) with a modest increase in memory
usage and resolver load compared to a 100 Mbit/s exit. We
conclude that Tor’s current DNS cache is mostly a privacy
harm because the majority of cached domains are unlikely to
lead to cache hits but remain there to be probed by attackers.

1 Introduction

Tor [10] is a volunteer-operated anonymity network composed
of relays that route encrypted traffic with low latency. One of
Tor’s trade-offs is to not provide anonymity against a global
passive attacker that observes traffic as it enters and leaves
the network [9, 10]. A typical attacker setting is therefore to

only observe encrypted traffic as it enters the network from
an identifiable user, forcing traffic analysis of the encrypted
packets to classify the user’s behavior. An attacker that tries
to classify visited websites is said to perform Website Finger-
printing (WF) [5, 16, 17, 26, 32, 47]. Many questions about
the practicality of WF attacks have been raised, ranging from
how to keep a trained dataset updated to managing false posi-
tives [6, 21, 33, 49]. False positives in WF may be ruled out
using side-channels [21,42]. For example, an attacker with ac-
cess to (traffic to [43]) Google’s public DNS resolver can use
it to confirm if a website visit really happened over Tor [13].

Side-channels that leak information about exiting traffic
are in fact many [42]. For example, during the course of a
website visit there may be interactions with DNS resolvers,
OCSP responders, real-time bidding platforms, and CDNs.
An attacker that is able to query or gain access to the resulting
datasets learns partial information about destination traffic,
notably without ever observing any of the exiting TCP flows
typically associated with correlation attacks on Tor [20, 30].
Depending on the ease of accessibility (e.g., does it require
Google reach), reliability (e.g., are there any false positives),
and coverage (e.g., is it only applicable for a small fraction of
exit traffic), the impact of a given side-channel will be more or
less urgent to address with mitigations and/or defenses [10].

1.1 Timeless Timing Attacks in Tor’s DNS

Timing attacks exploit that an operation takes more or less
time to execute depending on something secret. The attacker’s
goal is to infer the secret information by merely observing
the non-constant execution times, e.g., to recover a private
key [23], decrypt a ciphertext [1], or check if a domain is
cached by a Tor exit [42]. A remote timing attack takes place
over a network. Repeated measurements and statistics are usu-
ally required to account for network jitter, which adds noise
to the observed timings [8]. Van Goethem et al. [48] proposed
a technique that eliminates all network jitter in remote attacks.
It is applicable if two requests can be sent to arrive at the same
time, request processing is concurrent, and the order in which
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Figure 1: WF with an attacker that rules out false positives by
checking that the expected DNS records were cached at the
right time by conducting timeless timing attacks against exits.

responses are returned reflects differences in execution time.
We find that Tor’s DNS cache at exits fulfills all three crite-

ria of a timeless timing attack, allowing anyone to determine
if a domain is cached or not by sending a single TLS record.
The attack is reliable (neither false positives nor negatives),
confirmed by using our prototype to make 12M network mea-
surements against our own domains. The attack is also repeat-
able, making the exact time that a domain was inserted into
the cache inferable due to determinism in Tor’s TTL logic.

Figure 1 provides a summary of how the ability to infer
whether domains are (un)cached at exits make WF attacks
more practical. The attacker observes encrypted traffic from
a client to a guard relay at time t, classifying the network
trace as associated with foo.org. The attacker then conducts
timeless timing attacks against all exits in the Tor network
to determine if foo.org was really visited by someone at
time t. If the answer is yes the classification is accepted,
otherwise it is rejected. Prior work by Pulls and Dahlberg
show that the capability to determine whether a website was
visited from Tor at time t removes virtually all false positives
in WF attacks for all but the most popular websites on the
web [42]. We provide further evidence that this is a realistic
capability to assume by demonstrating that any attacker with
an Internet connection could have used it in attacks for the
last two decades. While it is a powerful capability to eliminate
false positives, the overall success in linking users with their
website visits also depends on the WF attack [6, 21, 33, 49].

1.2 Preload Defenses and Measurements

Patching Tor’s DNS cache to resist (timeless) timing attacks is
challenging without hurting performance. For example, mak-
ing all DNS lookups constant time would defeat the purpose
of having a cache. The idea of our long-term defense is to
remove harmful cross-circuit caching that is unlikely to boost
performance while still safely caching useful domains. The
Tor-network measurements of Mani et al. [28] tell us that

web-traffic from the Tor network matches that of the rest of
the Internet, following popularity lists like Alexa [2]. What
should boost cross-circuit performance is the upper parts of a
representative popularity list; not the long tail of infrequently
visited sites. This is the intuition of our defense. Preload a
list of popular domains that are cached and continuously re-
freshed by all exits. A domain name is either always cached
as part of the preload list or not shared across circuits at all.

We conduct four months of measurements in the live
Tor network to evaluate 400 popularity lists derived from
Alexa [2], Cisco Umbrella [7], and Tranco [25]. To put our
results into perspective, we also measure a baseline of Tor’s
current DNS cache performance. The measurement method is
to collect aggregated counters every 15 minutes, e.g., the num-
ber of lookups cache-hits, and memory overhead, from two
100 Mbit/s relays with web and permissive exit port policies.

Tor’s mean cross-circuit cache-hit ratio is currently 11%
(web) and 17% (permissive). Variants of Alexa/Tranco top-
200 (web) and Alexa/Tranco top-700 (permissive) achieve the
same cross-circuit cache-hit ratios. A preload list from the top-
10k can achieve 2–3 times higher cross-circuit cache-hit ratios
at the cost of at most 60 MiB memory and some increased
resolver load (manageable in part due to RFC 8767 [24]).
Throughout the entire measurement we noted only a slight
decline in effectiveness while using stale preload lists (i.e.,
when using four-month-old lists at the end). This adds to the
feasibility of using preload lists, as in practice someone has
to assemble and deliver them to all exits in the Tor network.

1.3 Contributions and Outline
Our contributions are as follows:

• Performance measurements of the DNS cache in Tor
over four months from two exits, showing an average 80–
83% cache-hit ratio with approximately 10,000 entries
in the cache; around 11–17% of the observed cache hits
are due to the cache being shared across circuits, and the
number of lookups appears weakly correlated with exit
probability (Section 3).

• Demonstration of a timeless timing attack that probes for
cached domains in Tor’s DNS cache without any false
positives or false negatives after 12M repetitions against
our own domain in the Tor network (Section 4).

• Mitigations based on fuzzy TTLs and cover lookups that
add some limited short-term protections (Section 5).

• A long-term redesign of Tor’s DNS cache that defends
against (timeless) timing attacks. Cache-hit ratios can
be tuned to offer comparable performance under simi-
lar resource usage as today or to significantly improve
shared cache-hit ratios (2–3x) with a modest increase
in memory usage and resolver load, notably invariant to
exit probability as preload lists are fixed (Section 6).
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Section 2 provides necessary background on DNS and Tor,
Section 7 discusses related work, and Section 8 offers conclu-
sions, followed by the availability of our research artifacts.

We would like to highlight that Sections 3.1, 4.4, and 6.4
describe ethical and safety precautions to ensure that no users
were harmed by our research and to maximize its positive
impact. We responsibly disclosed our timeless timing attack
to the Tor Project and engaged with the Tor Research Safety
Board as well as our university’s ethical review process as part
of performing network measurements to inform our defenses.

2 Background

The remainder of the paper requires preliminaries about DNS
(Section 2.1), in particular in relation to Tor (Section 2.2).

2.1 DNS
DNS is a hierarchical system that maps domain names (“do-
mains”) to IP addresses. The hierarchy is composed of root
servers, top-level domain (TLD) servers, and authoritative
name servers. Root servers are aware of TLD servers like
.com. TLD servers are aware of authoritative name servers in
their zone like example.com. Authoritative name servers are
aware of the actual answers to a domain lookup. A domain
lookup for example.com involves asking the root server for
the TLD server of .com; the TLD server for the authoritative
name server of example.com; and finally the authoritative
name server for the IP address of example.com. The resolve
process is typically performed iteratively in plaintext over
UDP by a third-party resolver that caches responses, e.g., to
improve performance. The default is usually to rely on ISP
DNS resolvers. It is also possible to configure other ones, e.g.,
Google’s 8.8.8.8 or self-hosted using unbound, bind, etc.

Of note is that the resolved domains are associated with
a Time To Live (TTL) value. As the name suggest, it is the
amount of time that a resolved domain should be considered
fresh. TTL values are sometimes overridden in caches to
improve reliability [24, 29] or preserve privacy [13].

2.2 Tor
The Tor network is composed of thousands of relays that route
encrypted traffic on behalf of millions of daily users [10, 28].
Ordinary uses of Tor include preserving privacy, safety and
freedom as well as facilitating dissent and circumventing
censorship [14, 44]. Access to the Tor network is easy using
Tor Browser (TB), which is configured to proxy all traffic
through a local Tor process that takes care of routing. TB adds
many other protections that are orthogonal to our work [35].

During a regular website visit a circuit is built through a
guard, middle, and exit relay. The first relay is fixed in a small
guard set that rarely changes once selected, while the middle
and exit relays are randomly selected weighted by bandwidth

for each new circuit. A circuit may have many streams (anal-
ogous to TCP/IP connections), typically corresponding to
separate flows for a particular destination. Control traffic and
data is transported through the network in fixed-size cells that
are encrypted in layers. At each hop in a circuit, one layer
of encryption is peeled-off. Outstanding cells from relay A
to relay B are sent in a shared channel that is TLS protected.
Public keys, relay identities, and more are discovered in Tor’s
consensus, which is secure if a threshold of trusted directory
authorities act honestly.

We are particularly interested in how Tor interacts with
DNS. To look up a domain, the user’s Tor process may send
a RESOLVE cell that requests resolution by the exit. Some
exits are configured with their own iterative resolvers, while
others rely on DNS from their ISP or other third-parties [13].
The answer to a lookup is stored in the exit’s cache, but with
the TTL clipped to 300 or 3600 seconds depending on if the
TTL is ≤ 300 seconds or not. A RESOLVED cell is then sent
to the user, who only gets to see the clipped TTL regardless
of how long it has been stored in the cache to avoid leaking
information about past exit traffic (like the insertion time
which would be trivial to infer from a counted-down TTL). If
too many entries are added to Tor’s DNS cache and memory
becomes a scarce resource, an Out-Of-Memory (OOM) job
deletes domains until freeing enough memory. This is all
controlled by an event-driven single-threaded main loop.

Of further note is that TB is based on Firefox. As part of
connecting to a website, DNS is handled transparently through
a SOCKS proxy provided by the local Tor process. Requests
to connect to a domain through the SOCKS proxy results in
the user’s Tor process sending a BEGIN cell to establish a
connection to the destination, which in turn triggers domain
resolution at the exit. In other words, there are two ways to
look up domains: RESOLVE cells and BEGIN cells. At no
point is any resolved IP address cached in TB or in the user’s
Tor process. This prevents shared state (the cache) from being
used to fingerprint a user’s activity across different circuits.

We continue our introduction to Tor’s DNS cache next
while describing the first measurement of its performance.

3 Tor’s DNS Cache Today

To better understand the DNS cache of Tor today, we set out to
collect performance metrics from exits in the live Tor network.
Section 3.1 covers ethical considerations, followed by data
collection in Section 3.2 and resulting metrics in Section 3.3.

3.1 Ethical Considerations
We submitted a proposal to the Tor Research Safety Board
describing measurements that would ultimately inform the
design of a long-term defense (Section 6) against our im-
proved attack (Section 4). To be able to assess the impact of
the defense we needed to better understand the DNS cache
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Tor has today as a baseline. After a couple of iterations with
the Tor Research Safety Board we reached consensus, and
then successfully completed our university’s ethical review
process. The proposal also included measurements needed
for our defense, described later in Section 6.3. During the
measurements period of four months we consulted the Tor
Research Safety Board to discuss our results.

The intuition of our measurement is as follows. Two exit re-
lays are operated to collect counters related to domain lookups.
For example, the number of lookups and cache hits (Sec-
tion 3.2). These counters are the result of all traffic at the exit,
aggregated over 15 minutes intervals before being written to
disk and then reset in memory. Based on an exit probability of
about 0.0005 (≈ 100Mbit/s), we extrapolated from the mea-
surements of Mani et al. [28] that we should expect about
725 website visits during 15 minutes. Each website visit typ-
ically triggers multiple domain lookups [13] that affect our
global counters. A collection interval of 15 minutes should
thus aggregate hundreds of website visits for a small fraction
of the network, making the resulting dataset hardly useful for
an attacker performing correlation or confirmation attacks on
the network. This sketch appears to be confirmed by our mea-
surement results: out of 23,632 15-minute intervals, only 18
contained less than 1,000 lookups. Our conclusion together
with the Tor Research Safety Board was that the resulting
dataset should be safe to make public (further discussed later).

3.2 Data Collection
Two 100 Mbit/s exit relays were operated on the premises
of DFRI (https://www.dfri.se) from May 2 until Septem-
ber 3, 2022. One exit was configured in its exit policy with
web ports1. The other relay was configured with permissive
ports2 to also allow non-web traffic. Otherwise the two exits
were identical, running on the same VM with a dedicated
unbound process that had caching disabled by setting the
rrset-cache-size to zero (to avoid TTL biases). We col-
lected the following counters every 15 minutes at both exits:

timestamp UNIX timestamp when the data was collected.

lookups Total number of observed domain lookups.

hits_5m Number of cache hits with a TTL of 300 seconds.

hits_60m Number of cache hits with a TTL of 3,600 seconds.

hits_pending Number of cache hits with a pending resolve,
i.e., an answer has been requested but is not yet available.

hits_same_circuit Number of streams that looked up a do-
main that was previously looked up on the same circuit.

num_cache_entries Number of entries in Tor’s DNS cache.
1Reject all ports except 80 and 443. (The exit can still do DNS for users.)
2Allow all ports except 25, 119, 135–139, 445, 563, 1214, 4661–4666,

6346–6429 6699, and 6881–6999.

A timestamp is needed to plot metrics as a function of
time. Timestamps are also crucial for the additional counters
described in Section 6.3. The number of lookups and different
types of cache hits are needed to get a baseline of cache-hit
ratios. The number of entries in Tor’s DNS cache (at the time
of collection) is needed to get a baseline of memory usage.
The necessary Tor changes to collect all metrics (including
Section 6.3) were relatively modest: 400 lines of code.

3.3 Metrics

Regarding lookups per 15 minutes, the web exit processed a
mean of 17,530 and median of 13,393 lookups (Figure 2a),
and the permissive exit processed a mean of 41,100 and me-
dian of 26,940 lookups (Figure 2b). The permissive exit policy
results in significantly more lookups. Around August 1, our
exits experienced downtime, visible as dips in lookups in both
figures (at times fewer than 1,000 lookups, as noted in Sec-
tion 3.1). Exit probability is weakly correlated with lookups:
Pearson correlation 0.30 (web) and 0.16 (permissive).
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Figure 2: Lookups every 15 minutes and exit probability.

Figures 3a and 3b show the number of entries in Tor’s
DNS cache. The web exit has a mean of 7,672 and median
of 7,325 entries, and the permissive exit a mean of 12,130
and median of 11,408 entries. Both appear relatively stable
compared to the number of lookups (note log-scale y-axis in
Figure 2). Likely, this is because traffic on the Tor network is
not uniformly distributed, but rather concentrated to relatively
few destinations, e.g., as shown with website popularity [28].

Central to a DNS cache is its cache-hit ratio: how often
lookups can be resolved using cached entries instead of asking
DNS resolvers. Figures 4a and 4b show the cache-hit ratios
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Figure 3: Cache entries every 15 minutes.

for the two exits, with a mean cache-hit ratio of 0.80 (web)
and 0.83 (permissive). We also show if the cache hits occurred
due to a cache entry used earlier on the same circuit (“same”)
or from another circuit (“shared”). Further, over all the cache
hits, we show if the hits were because of DNS entries with a
five-minute cached TTL (“5min”), a 60-minute cached TTL
(“60min”), or pending entries in the DNS cache (“pending”).
Same circuit hits are likely due to Tor Browser improving per-
formance by creating multiple streams to the same destination.
The cross-circuit cache-hit ratio is much smaller (“shared”)
with a mean of 0.11 (web) and 0.17 (permissive). We return
to these ratios in Section 6.5 to compare with our defense.

During the four months of measurements, our exits experi-
enced sporadic downtime (early August) and the Tor-network
endured significant network DDoS activities [37]. This shows
in our data, e.g., with the drop to close to zero lookups in Fig-
ure 2, huge spikes of cached entries in Figure 3, and periods
where the cache-hit ratio was almost one in Figure 4.

To summarize, Tor’s DNS cache has a cache-hit ratio over
80% using a modestly sized DNS cache. About 11–17% of
these hits are due to sharing the cache across circuits. The
number of lookups are weakly correlated to exit probability.

4 Timeless Timing Attack

Past work demonstrated timing attacks against Tor’s DNS
cache [42]. In short, anyone can observe the latency of a do-
main lookup to determine if it is more or less likely that an
answer is (not) cached. A quick response is more likely to be
cached, thereby leaking information about past traffic on an
exit. A downside of such a remote timing attack is that it is
subject to network jitter while traversing hops in the Tor net-
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Figure 4: Cache-hit ratio every 15 minutes. The total ratio can
be split by same+shared hits or 60min+5min+pending hits.

work. We show how to bypass this limitation by constructing
a timeless timing attack that is immune to network jitter [48].
Notably the attack does not require any special capabilities,
just Internet access and a very modest computer.

Section 4.1 outlines the attack, followed by a description
of our prototype implementation in Section 4.2, evaluation in
Section 4.3, as well as ethical considerations in Section 4.4.

4.1 Detailed Description

An exit’s processing of an incoming RESOLVE cell depends
on if an answer is cached or not, see Figure 5. An answer may
already be available and a RESOLVED cell can be scheduled
for sending immediately (“cached”). Otherwise an answer is
not yet available and a resolve process needs to take place
concurrently to avoid blocking (“uncached”). We construct a
timeless timing attack by exploiting the fact that scheduling
RESOLVED cells for sending with different concurrent tim-
ings depend on if an answer is cached (send immediately) or
uncached (send based on an event later on) [38].

4.1.1 Attack Outline

Suppose that we craft two RESOLVE cells for example.com
and evil.com such that they are processed by an exit di-
rectly after each other without any events in between. Further
suppose that evil.com is cached. The first RESOLVE cell
is example.com. The second RESOLVE cell is evil.com.
Following from the flow in Figure 5, we can determine if
example.com is (un)cached by observing only the order in
which the two RESOLVED cells come back. The order will
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Figure 5: Processing of an incoming RESOLVE cell at an exit
relay. Answers of concurrent resolves are triggered by events.

be switched if example.com needs concurrent resolving be-
cause the answer is not available until after an event (un-
cached). Otherwise the order is preserved (cached). Sending
two requests to be processed at the same time and exploiting
concurrency as well as differences in processing time that
affects the response order is what makes it timeless [48].

Figure 6 provides a detailed description on how to satisfy
the presumed setup. The attacker starts by looking up its own
domain name for a selected exit. This ensures that evil.com
is cached. Next, two RESOLVE cells are sent in the same
TLS record from a hop proceeding the exit. Both cells will
be unpacked at the same time by TLS [39], and when pro-
cessing starts all available cells will be handled before giving
control back to Tor’s main loop [40]. Now recall that Tor
is single-threaded. An event from any concurrent DNS re-
solve can thus not be completed before all unpacked cells
were fully processed. This ensures that the order in which our
two RESOLVED cells come back in is guaranteed to leak if
example.com is (un)cached as long as both RESOLVE cells
arrived together in-order and evil.com is really cached.

It should be noted that an attacker can gain full control of
how their TLS records are packed to exits by either running a
modified Tor relay or creating one-hop circuits. In practise,
it is also possible to omit the step of caching evil.com and
instead send a RESOLVE cell containing an IP address. Tor will
simply echo the IP as if it was cached [41]. We describe the
attack without this optimization because it is more general.

4.1.2 Repeated Attack to Learn Insertion Time

So far we described how to determine if a domain is
(un)cached at an exit. Figure 7 shows how to derive the ex-
act time that a domain was added to an exit’s DNS cache.
First determine whether the domain’s TTL will be clipped to
300 or 3,600 seconds by observing the TTL returned from
the authoritative name server or the configured resolvers of
the exit [13]. Then repeat the timeless timing attack period-
ically until the domain is no longer cached, say, once per
second. Suppose the expected clip is 300 seconds and the
attack started at time t. If it takes x < 300 seconds for the
entry to become uncached, it was added to the exit’s DNS

cache at time t +x−300s. Observing x > 300 seconds means
that a different party inserted the entry into the cache between
probes (may happen for some of the most frequently looked-
up domains, depending on probing frequency). To recover, the
attacker can perform the same steps again until they succeed.
For example, with two tries the initial insertion happened at
t + x−600s. Notably these estimates cannot be more precise
than the attacker’s repetition interval.

4.1.3 Discussion

While an attacker can determine if a domain is cached by an
exit and if so the exact time it was added, the attacker cannot
determine the number or timings of lookups for a domain
after entering the cache. In isolation, the attacker also cannot
determine which identifiable user cached a given domain.

It is easy to conduct the attack in parallel because probing
for the status of foo.org is completely independent from
bar.org at the same relay as well as other probes on different
relays. In other words, an attacker can probe a single domain
on all exits simultaneously, many different domains at a single
exit, or both. Network-wide probes for the same domain may
be detectable by observing the DNS caches of multiple relays
and correlating their contents. However, note that a risk-averse
attacker [3] may spread their probes over time (five or sixty
minutes) and domains (expected twelve domains per website
on Alexa top-1M websites [13]), if the goal is to confirm a
website visit.

An example use-case for a parallel attack is answering
network-wide queries, for example, “is foo.org visited more
frequently than bar.org, or did any Tor user visit baz.org at
a particular point in time?” The latter is an instantiation of a so-
called website oracle [42]. Website oracles remove virtually
all false positives in WF attacks for all but the most popular
websites on the web, and WF attacks may connect identifiable
users with visited websites. See Figure 1 in Section 1 for an
overview of this attack setting.

4.2 Prototype Implementation

We prototyped our timeless timing attack so that it runs for
a given exit and a list of domains. Figure 8 shows the over-
all setup which consists of carml, tor-resolve, a locally
patched Tor process, and a Python script automating the en-
tire setup. First Tor is started, a one-hop circuit is built to the
selected exit, and all streams are attached to it using carml.
Next, tor-resolve is used to send a special lookup query
for example.com by simply appending a magic string --sc.
The patched Tor process splits such requests into two RE-
SOLVE cells in the same TLS record: one for the specified
domain, and another one that is guaranteed to not need any
concurrent resolving. Finally Tor sets the output to 0.0.0.0
if the resulting RESOLVED cells switched order, otherwise
1.1.1.1 (arbitrary constants). After processing all domains
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Figure 6: The attacker ensures a domain evil.com is cached. Next, two RESOLVE cells are sent to arrive at the same time
in-order. The relay processes both cells before triggering any resolve event. This means that answers can only be sent directly if
no resolving is needed. The order of RESOLVED cells switch if example.com is uncached. Otherwise the order is preserved.
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Figure 7: Repeated timeless timing attack to infer the exact
time that a domain was cached by someone at an exit relay.
For example, if the expected clip is 300s (ttl ≤ 300s), the
attack is repeated every second, and the observed x is 40s,
then caching of example.com happened at time ≈ t−260s.

Tor is closed and the output is a list where each item is zero
(uncached), one (cached), or negative (unknown, e.g., due to a
resolve timeout, a stream attach failure, or a vanished circuit).
The complete attack required less than 100 lines of C to patch
Tor, as well as 200 lines of Python to make it fully automated.

4.3 Network Measurements
We conducted measurements in the live Tor network to evalu-
ate the reliability of our prototype with four parallel instances
of the setup in Figure 8 on a system with an Intel(R) Xeon(R)
CPU E5-2630 @ 2.30GHz and 4GB of DRAM. All targeted
domains were our own, see ethical considerations in Sec-
tion 4.4. In total there were 14,446 runs between May 17–26,
2022. Each run used an exit that was sampled uniformly at
random. Assuming 1,000 exits at all times (conservative),
the individual select probability should not exceed 0.004 per
run. Each run performed up to 1,000 timeless timing attacks,
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example.com evil.com
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configure
one-hop
circuit
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0.0.0.0
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example.com:ip
RESOLVED

0 example.com

Figure 8: Local attack setup consisting of carml to build one-
hop circuits, tor-resolve to inject queries, and a patched
tor process that transforms them into timeless timing attacks.

chunked into 500 attacks per circuit and alternating between
uncached and cached lookups by specifying a unique do-
main twice in a row: <counter>.<timestamp>.<instance
id>.example.com. The maximum runtime was set to ten
minutes. Each query also had a ten second timeout. In the
advent of errors like circuit failure or timeouts, the remainder
of the run was canceled but all results up until that point were
collected. The average number of DNS requests leaving the
Tor network from all four combined instances was 8.6 per
second. The effective queries per second was slightly higher
due to brief pauses while setting up a new run. For reference,
Sonntag reported in 2018 that the DNS resolver of an exit
with 200Mbit/s received an average and maximum of 18 and
81 requests per second [45]. Earlier, Figure 2 also showed sig-
nificant variability in lookups. Handling our per-exit overhead
during a couple of minutes should thus be insignificant when
compared to regular patterns for DNS traffic in the network.

Table 1 summarizes our results. After 12M timeless tim-
ing attacks, there were no cases of uncached lookups being
reported as cached and vice versa. This is consistent with the
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description in Section 4.1: neither false positives nor false
negatives are expected. The observed probability to not get
an answer due to detectable failures were 0.00025.

Table 1: Timeless timing attack results. Neither false negatives
nor false positives were observed with 6M repetitions each.

Type Got uncached Got cached Failures
Uncached 6,034,779 0 2,858
Cached 0 6,034,594 142

4.4 Ethical Considerations

We responsibly disclosed our attack to the Tor Project through
their security list. The submitted disclosure included a theo-
retical attack description, a prototype implementation with
measurements showing how reliable it was, as well as a sketch
of short-term and long-term defenses. As part of our dialog,
we also coordinated with the Tor Project on submitting this
paper to USENIX Security to get peer review.

The conducted network measurements targeted domains
under our own control. This ensured that we did not learn
anything about real Tor users. Performance overhead on exits
and the Tor network at large was also modest, see Section 4.3.
In other words, the downsides were negligible while the sig-
nificance of evaluating real-world reliability was helpful to
inform and motivate the need for mitigations and defenses.

5 Mitigations

Until a more comprehensive defense can be deployed we
propose two short-term mitigations that require little (fuzzy
TTLs) or no (cover lookups) changes to Tor. The former adds
some uncertainty with regards to when a domain was added
to an exit’s DNS cache. The latter can remove or reduce the
attacker’s ability to conduct attacks against specific domains
but is limited in its scalability.

5.1 Fuzzy TTLs

Recall that it is possible to determine when a domain was
inserted into an exit’s DNS cache (Section 4.1) once you
know the time t when the timeless timing attack started, the
duration until the domain was no longer cached x (repeated
probes), and the expected clip value clipped_ttl of the domain.
The idea of fuzzy TTLs is to add uncertainty by randomizing
the length of time that an entry is cached.

In more detail, keep Tor’s DNS cache as-is but sample
the cache duration uniformly at random from [m,clipped_ttl],
where m is the minimum duration to cache. Upon observing
the exact time of removal t + x, the attacker now learns that
the domain has been in the cache for the duration x and was

thus cached between [t + x− clipped_ttl, t−m]. Note that if
m = clipped_ttl, then x = 0; the same as in Tor today.

The reality of websites is unfortunately that they consist of
multiple domains, reducing the effectiveness of fuzzy TTLs
because the attacker uses the most lucky sample. For a list of
domains d1, . . . ,dk that were added at the same time with iden-
tical clips, then x← max(x1, . . . ,xk). Based on our preload
list measurements presented in Section 6.2, we expect around
8–13 domains per site available for an attacker to potentially
query for. Earlier work found a median of two unique domains
out of ten domains in total per website on Alexa top 1M [13].

Fuzzy TTLs are an ineffective mitigation if the attacker
just wants to confirm suspected activity with a low base rate,
i.e., the mere existence of cached domains anywhere in the
network is enough of a signal [42]. Fuzzy TTLs are a plus for
websites that are modestly popular in the network, since the
attacker has to determine which of several exits with cached
domains is the correct one. Having to consider multiple do-
mains and exits (to narrow down the exact time) is more noisy
in the network and increases the risk of detection [3]. At-
tackers may be forced to consider a time-window of several
seconds or even minutes, which is a big win for defending
against correlation and confirmation attacks [13, 42].

5.2 Cover Lookups
The idea of the cover lookups mitigation is to simply inject
domains into DNS caches in the Tor network to create false
positives. Injected domains must be indistinguishable from
domains cached from real Tor user activity. For this, a dis-
tribution that models website visits for a particular base rate
should be used rather than running, e.g., a deterministic cron
job. Further, care has to be taken to capture all predictable
domains for each website to defend.

A more drastic mitigation would be to keep a site’s domains
cached at every exit all the time, e.g., by running exitmap [50]
every five minutes. This obviously scales poorly. The network
overhead would already be significant for a few hundred sites,
e.g., estimates based on Alexa top-1k would add about 26.7 re-
quests per second to each exit.

Cover lookups do not scale, even if just injected at few exits
probabilistically according to some target base rate. It is a last
resort mitigation for site operators that fear that their users are
targeted by motivated attackers and where, for some reason,
the site cannot transition to being completely (no resources
loaded from other domains) hosted as an onion service.

6 Redesigning Tor’s DNS Cache

To address (timeless) timing attacks in Tor’s DNS cache we
considered a number of possible smaller changes. All of them
failed for different reasons, however. Section 6.1 presents a
straw-man design that is helpful to understand why, while at
the same time being closely related to the properties achieved
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by the preload DNS cache design in Section 6.2. Section 6.5
presents an extensive evaluation that answers questions about
how feasible and performant our proposal is.

6.1 Straw-man Design
We omit all but one straw-man design that is particularly
important to understand the proposed redesign in Section 6.2:
simply remove Tor’s DNS cache. If there is no DNS cache
to speak of in Tor, it is easy to see that there cannot be any
(timeless) timing attacks against Tor’s DNS cache (because it
does not exist). What these attacks would instead target is the
exit’s DNS resolver which also has a cache. At a first glance
it may seem like an insignificant improvement that just moves
the problem elsewhere. This would be the case if every exit
used its own dedicated DNS resolver. However, an exit may
share a resolver with other exits or most importantly clients
outside of the Tor network. A prime example is the resolver
of the ISP of the exit. Any inference made from the state
of shared resolvers would thus not be directly attributable to
activity on the Tor network. This would therefore make false
positives a reality with regards to if a domain was cached or
not as a consequence of activity in the Tor network.

Introducing false positives to the timeless timing attack
itself is in general challenging because an answer needs to be
available at the same time regardless of there being a cache hit
or miss. False negatives may seem easier and could make the
attacker discard otherwise correct classifications, e.g., because
an attack only works half of the time. However, without false
positives, attackers are still able to reliably remove otherwise
incorrect classification through confirmation [42]. Because
websites typically make use of multiple domain names, de-
fenses that add random delays to responses (to cause false
negatives) would need to consistently add similar delays for
all relevant domains tied to websites or other user activity the
attacker is trying to infer. The semantics surrounding user
activity is hard if not impossible to capture at the DNS level.
Therefore, all false negative defenses we could think of failed.

Now suppose that Tor has no DNS cache and exits always
use a shared resolver that may introduce false positives. A
major downside is that performance would take a significant
hit due to the lack of a cache in Tor, especially since a shared
resolver is likely not running locally, but provided by the ISP
or some third-party. It is likely that both page-load latency
and resolver load would increase. Worsening performance
and especially latency is the opposite of what the Tor project
is working towards [10, 34]. Next we show how to get the
good properties of not having a DNS cache in Tor (potential
for false positives) while improving performance.

6.2 The Preload DNS Cache
This is not only a defense against (timeless) timing attacks
in the DNS cache, but a complete redesign of Tor’s DNS

cache. Ultimately, what we want to achieve is false positives
for an attacker trying to determine client activity in the Tor
network with the help of DNS. The only way to achieve this—
upon learning that a domain associated with some activity has
been looked up—is if there is a possibility that this domain
lookup was caused from outside of the Tor network. Therefore,
as a starting point, we assume that the Tor Project would
strongly encourage exit operators to not run local resolvers
dedicated to exits. Instead, exit operators should configure
their systems to use their ISP resolvers or use a third-party
provider. Greschbach et al. [13] investigated the effect of
DNS on Tor’s anonymity, including resolver configuration,
and found that using the ISP’s resolver would be preferable.

First remove all of Tor’s current DNS caching as in our
straw-man design. The preloaded DNS cache instead con-
tains two types of caches: a same-circuit cache and a shared
preload cache, see Figure 9. The preloaded cache only con-
tains domains from an allowlist. This allowlist is compiled
by a central party (e.g., by the Network Health team in the
Tor Project) by visiting popular sites from several different
vantage points. The allowed domains are then delivered to
exits and continuously resolved to IPs by each exit. During
domain resolution on a circuit, the client’s lookup first hits
the preload cache. If the domain is preloaded, a cache hit is
guaranteed regardless of if anyone performed a lookup before.
Therefore, it is safe to share this cache across circuits without
leaking information about past exit traffic. On a cache miss,
the circuit’s same-circuit cache is consulted. As the name
suggests, this cache is shared for streams on the same circuit
but not across different circuits. Due to Tor’s circuit isolation,
an attacker is unable to probe any other cache than their own.
Therefore, (timeless) timing attacks are eliminated (similar to
if Tor did not have a DNS cache at all), but without removing
the possibility of cache hits.

Including a same-circuit cache in the defense is moti-
vated by Tor’s significant same-circuit caching to retain
performance, see Figures 4a and 4b in Section 3.3. One
can confirm that this is most likely due to Tor Browser
opening several concurrent connections by referring to the
network.http.max-persistent-connections-per-pro
xy option and/or enabling debug logging3, observing that
multiple streams are often created to the same destination.
Note that these destinations are domains and not IPs, and that
neither TB nor the client-side Tor process has any notion
of a DNS cache to prevent cross-circuit fingerprinting (see
Section 2.2). While a hypothetical per-circuit client-side
cache would be an option, it would per definition not be
able to generate cache hits for concurrent resolves (without
violating circuit isolation, potentially leading to cross-circuit
fingerprinting) and put pressure on exits unless they do
the appropriate caching. This is why our design places the
same-circuit cache at exits instead of clients.

3https://gitlab.torproject.org/tpo/applications/tor-
browser/-/wikis/Hacking#debugging-the-tor-browser
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Figure 9: Overview of the preloaded DNS cache design. A central party visits sites on a popularity list from different vantage
points to compile an allowlist of domains that each relay keeps preloaded at all times by resolving them continuously. DNS
looks-ups start in the shared preload cache and moves on to a dynamic cache that is never shared across circuits on cache misses.

A preload cache is also motivated by performance, how-
ever without any of the harmful cross-circuit sharing. The
remainder of this section explores the performance impact of
compiling an allowlist from popularity lists—like Alexa [2],
Cisco Umbrella [7], and Tranco [25]—by comparing the re-
sulting cache-hit ratios to baseline Tor today. The preloaded
DNS cache is inspired by RFC 8767 [24] which allows re-
solvers to serve stale data in some cases (see Section 7). Here,
exits keep domains on a preloaded allowlist fresh on a best-
effort level, serving stale records if necessary. Upon shutdown,
exits could persist IPs in the preload cache to disk as a starting
point on startup. Upon startup, if the preload cache have yet to
be populated with IPs, simply treat lookups as cache misses.
We discuss periodic refresh overhead further in Section 6.5.3.

6.3 Data Collection
As part of understanding Tor’s DNS cache (Section 3) we also
collected data to be able to evaluate the performance of the
preload design. In particular, we evaluate different popularity
lists, the impact on cache-hit ratio, estimated DNS cache size,
and how these change over time.

Central to the preload design is domain popularity lists.
We included the Alexa list [2] because that is what Mani
et al. showed to be accurate for Tor [28], the newer Tranco list
because it may be more accurate [25], and the Cisco Umbrella
list because it also contains “non-web” domains [7].

In addition to considering the popularity lists, we also
created extended lists from Alexa and Tranco by visiting
each domain on those lists using the Chromium browser and
recording all requests for additional domains. We repeated
this three times from Europe, twice from the US, and twice
from Hong Kong by using a popular VPN service. Each visit
was given a timeout of 20 seconds. No pruning of the resulting
extended lists of domains was done. Much can likely be done
to make these lists of domains significantly more comprehen-
sive (e.g., by considering popular subpages that might contain
domains not on the front-page of websites) and smaller (e.g.,
by pruning unique tracking domains: in one of our biggest

lists, *.safeframe.googlesyndication.com makes up 8%
of domains with unique tracking subdomains with no value
for caching). Another direction to explore that could result
in lists that are smaller and/or more comprehensive would be
to tailor them specifically for relays in certain regions. For
example, website visits from Europe may be treated differ-
ently by website operators due to regulations like the GDPR.
(In other words, there could be differences with regards to
domains—not to be confused with IPs that each relay already
resolves locally—that are encountered during website visits.)

Based on the regular and extended popularity lists, we made
several lists from top-10 up to and including top-10,000 in
increments. Further, the weekend before each of the first four
weeks of data collection (see Section 3), we downloaded fresh
popularity lists (Fridays) and generated new extended lists
(Saturdays and Sundays). We generated in total 4∗20∗5 =
400 lists: for the first four weeks, 20 lists each for {Alexa,
Tranco, Umbrella, extended Alexa, extended Tranco}.

Our data collection involving the lists took place in three
phases. The first phase consisted of the first four weeks with
increasingly more lists, which was followed by two weeks of
analysis of our results and dialog with the Tor Research Safety
Board. This lead us to the third and final phase of data col-
lection where we excluded the vast majority of lists, focusing
only on getting extended data for about eleven more weeks
on the most informative and useful lists (see Section 6.5).

6.4 Further Ethical Considerations
We discussed the preload additions as part of our other data
collection, received feedback from the Tor Research Safety
Board, and passed our university’s ethical review process.

Our rationale for why including counters for preload lists is
safe was as follows. We collect counters of aggregate lookups
that would have been cache-hits on each list over 15 minutes.
Except for the top-10 lists (non-extended), all other lists con-
tain in the order of 100–1,000 unique domains aggregated into
a single counter. The main harm associated with the dataset
is if they enable an attacker to rule out that a particular web-
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site or Tor-user activity took place at our exits (see following
paragraph). So, little to no zero counters in our data is what
we set out to achieve. As an additional safety precaution our
exits only have a 0.1% exit probability, further making any
zero counter less useful.

Let us look more closely at the potential harm. For websites,
the results of Mani et al. [28] tell an attacker to expect a power-
law-like distribution of website popularity in the network. As
discussed in Section 3.1, we expect on average about 725 web-
site visits to each exit per 15 minute period. This is the prior
of an attacker wishing to perform confirmation or correlation
attacks. Most of the visits should be to popular websites (per
definition) and if the dataset allows an attacker to rule such
visits out it may cause harm because it is useful information
to the attacker [42]. Because of this, we grouped our lists
into intervals of 100s (for top-?00) and 1000s (for top-?000).
We stopped at top-10k because we estimated little utility of
caching domains of even less popular websites. Further, to
illustrate when the type of data we collect can be harmful,
the results of Mani et al. [28] and Pulls and Dahlberg [42]
tell us that at some point the logic becomes flipped in terms
of attacker utility: confirming that it was possible that a visit
took place to a rarely visited website is useful. The popularity
(i.e., network base rate) of websites is central. We set out to
only collect data on the most popular of websites/domains, so
for us, the focus is on when the attacker can rule out website
visits or some user activity: an attacker already expects that
popular websites/domains are visited.

We analyzed the 1,330,400 sample counters we col-
lected over the first four weeks for different popularity
lists. We found 33 zero counters. All of them belonged
to Alexa top-10 lists from different weeks! Besides Alexa
top-10, the next list with the lowest counter was Tranco
top-100 from 20 May with 39 hits. Finding empty coun-
ters for Alexa top-10 was at first very surprising, because
the list contains the most popular websites on the web
(e.g., from 20 May: google.com, youtube.com, baidu.com,
facebook.com, instagram.com, bilibili.com, qq.com,
wikipedia.org, amazon.com, and yahoo.com). However,
note how the actual domains on the list (of websites) do not
contain the www prefix nor any other popular subdomain
associated with the sites. This highlights how poor the regular
non-extended lists are at capturing actual website traffic. We
can further see this for both Alexa and Tranco in Figure 10,
presented next in Section 6.5.1. Even the top-10k lists have
very low cache-hit ratios.

By comparing a list with a more popular list (which should
be a strict subset) and observing the same counter value it
is also possible to infer that likely no visits took place to the
unique domains on the less popular list. (This could happen
by chance though.) We found 16,055 (1.2%) such samples:
5,073 to top-10k lists, 3,703 to top-[1k,10k) lists, and 7,279
to top-[200,1k) lists. None of them were to top-100 lists.
This might seem alarming at first glance, but taking a closer

look at the lists we find that only 135 of the samples were to
extended lists (77 to x-Tranco top-10k, the highest rank list
was x-Tranco top-600 with one sample). Further, only five of
the samples belonged to a list from Umbrella. The remaining
15,915 samples were to the regular (non-extended) Alexa and
Tranco lists. This is of limited use to attackers for popular
domains, because while the lists capture popular websites,
our dataset contains counters of aggregate domain lookups.
An inferred zero counter does not mean that no visits took
place to websites for the non-extended lists. For example,
if you enter www.google.com or www.wikipedia.org into
Tor Browser, neither google.com nor wikipedia.org are
actually connected to. The recursive resolver of the exit may
perform the lookup, but Tor will not, so it is not captured in
our dataset for the non-extended lists. The extended lists, due
to being generated from actual website visits, include domains
typically connected to by Tor Browser. Another example is
users visiting direct links to websites and not entering the
domain manually in the browser, such as when following
links from search engines or sent through social media.

When designing our measurements the above detail was
not considered. We included the regular popularity lists for
sake of comparison. Ideally the non-extended lists would have
been effective sources for preload lists. This was evidently
not the case for Alexa and Tranco (see later results), but was
the case for Umbrella. So while what we did learn helped us
understand the value of using extended lists to improve cache
hits, in hindsight we could have come to the same conclusion
without the same granularity for non-extended lists.

In the second phase of our data collection (see Sec-
tion 6.3), we discussed the above detail with the Tor Research
Safety Board and concluded to stop collecting data for (non-
extended) Alexa and Tranco, and to minimize the lists for
future collection to those necessary to determine the longevity
of potentially useful preload lists (based on our findings). Out
of an abundance of caution, we will only share the collected
counters for non-extended Alexa and Tranco lists with re-
searchers for research purposes (the rest of the data is public).
The counters collected during the second phase were consis-
tent with the data from the first phase.

During the third phase of data collection, we limited the
collection to extended Tranco top-{10, 100, 1k, 2k, 4k, 5k,
7k, 10k} lists and the Umbrella top-10k list, all from April
29. The goal was to learn how cache hits get worse over time
with old lists. Out of 141,624 sample counters collected, three
were zero and 59 were relatively zero when compared to the
more popular list.

6.5 Performance Evaluation

The goal of our evaluation is to determine over time: cache-hit
ratio of potential preload lists (Section 6.5.1), memory usage
at exits (Section 6.5.2), and resolver load (Section 6.5.3).
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6.5.1 Results: Preload Lists

Our dataset is extensive with 2,498,424 sample counters from
400 popularity lists spanning about four months. Figure 10
shows comprehensive heatmaps of shared cross-circuit cache-
hit ratios for the web (Figure 10a) and permissive (Figure 10b)
exits over the first six weeks of data collection (first and sec-
ond phases). Cache-hit ratios are medians (very similar to
the mean) for 24h periods. In each figure, the groupings of
the four weeks when we added new lists are visible (top to
bottom), as well as baseline Tor at the bottom row for sake of
comparison. Note how the regular Alexa and Tranco top-10k
lists perform poorly: the two black (< 5% cache-hit ratio)
lines at the top of each grouping. Even Umbrella 1k is bet-
ter, with Umbrella 10k being comparable to baseline Tor.
The extended lists clearly improve over baseline Tor, with
the extended 10k-lists even reaching over 30% cross-circuit
cache-hit ratios some days. Look at how the lists change over
time: we see no real difference between lists generated at
end of April and those generated during May, but consistent
changes across all lists over time, likely due to varying traffic
at the exits. The differences between using Alexa or Tranco to
generate extended lists are negligible, so we focus on Tranco
for the remainder of this analysis as it is open, maintained,
and a more recent source of website popularity [25].

Figure 11 shows the observed cross-circuit cache-hit ratios
for eight different extended Tranco lists, Umbrella top-10k,
and Tor baseline. We used lists from the end of April because
they have the most data. As a baseline, Tor’s current DNS
cache has a mean cache-hit ratio of 11% for web and 17% for
permissive. In terms of different popularity lists, the regular
(non-extended) Tranco and Alexa lists are ineffective: the
top-10k lists are regularly below 5% for web and permissive
(see Figure 10). Umbrella top-10k does much better with
mean 17% (web) and 16% (permissive). This is slightly worse
(permissive) and comparable (web) to baseline Tor.

The extended lists show a further improvement, comparable
in terms of average (full duration of lists) cross-circuit cache-
hit ratios to baseline Tor at top-200 for Alexa and Tranco for
web and at top-700 for permissive. The extended lists from
top-1k get (depending on which of the compiled extended
Tranco lists) 20–24% (web) and 15–18% (permissive) and up
to 27–32% (web) and 22–27% (permissive) at 10k. There is
very little gain between top-7k and top-10k. In general, the
extended lists do relatively worse on the permissive exit and
the Tor baseline is higher: this makes sense, since Alexa and
Tranco are focused on websites. This is further confirmed
by Umbrella doing better as a more general-purpose domain
popularity list.

Note that Figure 11 shows the cross-circuit cache-hit ratios
for a selection of the very first preload lists we created on
the April 29. The results are very encouraging: time seems to
have only a slight detrimental impact on cache hits. After four
months the larger extended lists show a noticable performance
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Figure 10: Shared cross-circuit cache-hit ratios (%) for se-
lected preload lists during the first six weeks (x-axis) of data
collection. The plotted values are medians over 24h, and dates
on the y-axis show the date of original list download.
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Figure 11: Shared cross-circuit cache-hit ratios for eight differ-
ent extended Tranco lists, Umbrella top-10k, and Tor baseline
during four months in 2022.

improvement over baseline, with the exception of an odd spike
in baseline in early September (we speculate that this is DDoS-
related). The robustness of preload lists removes one of the
main downsides of the preload design, i.e., to maintain and
deliver a current list to exits. It is likely feasible to ship hard-
coded preload lists as part of regular Tor releases and still
improve performance, assuming that exit operators upgrade
their software a couple of times per year.

6.5.2 Results: Cache Entries

Figure 12 shows the number of cache entries needed in Tor
as-is (“baseline Tor”) and for the preload design for a range of
different popularity lists. We can accurately estimate an upper
bound because we collected the total number of entires in all
same-circuit caches as part of our measurements. This count
is an upper bound, because some of those entries would have
already been cached in the preload cache. The popularity lists
have static sizes, and to be an accurate upper bound we used
the largest observed size for each list over the four weeks.

Starting with the same-circuit cache, look at the line for
extended Tranco top-10 (“x-Tranco 10”) in Figure 12: this ex-
tended list contains only 90 entries, so the lines at the bottom
show mostly the number of entries used by the same circuit
cache. The size of the same-circuit caches should be propor-
tional to the number of open circuits, and therefore follow exit
probability. Based on the data from Figure 12, we do not sus-
pect this to be a significant burden. It would be trivial to cap
the size and/or prune the size as part of OOM-management,
or dropping entries based on their age would probably have
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Figure 12: Estimated cache entries for eight different extended
Tranco lists, Umbrella top-10k, and Tor baseline.

little impact on performance (presumably most value is at the
start of the circuit when most streams are attached).

Recall from Section 3.3 and Figures 3a and 3b that the
permissive exit had a mean of 12,130 entries compared to
the web exit’s 7,672 mean. We see the same figures for the
baseline in Figure 12. Albeit slightly higher on average for the
web exit but more stable, we see that Umbrella 10k as well as
extended Tranco top-1k are about the same as Tor baseline.
So with about the same memory usage as now the preload
design would offer slightly (permissive) or noticeably (web)
better cache-hit ratios. Looking at the top-2k up until top-
10k extended lists we see a significant higher memory usage
(only slightly sublinear) but that comes with significantly
higher cache-hit ratios, as seen in Figure 11. In absolute terms,
for extended Tranco top-10k, about 60,000 cache entries—
even if pessimistically assuming 1 KiB per entry—would
end up using about 60 MiB of memory for the cache. Since
domains can be at most 255 bytes and most domains are
much shorter, one could clearly implement the cache more
memory-efficiently. Also, as mentioned earlier, it is likely
possible to reduce the size of the extended top-10k lists by
removing useless tracking domains. Further note that the
memory needed to cache the preload list—unlike the same-
circuit cache—only depends on the size of the list, not the
number circuits or streams created at the exit.

6.5.3 Results: Resolver Load

In general, on the one hand, improving cache-hit ratios will re-
duce resolver load and scale well with increased traffic. On the
other hand, continuously refreshing domains on the preload
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list increases resolver load. Consider the mean number of
lookups at the web exit, 17,529, and its mean/median cache-
hit ratio of 0.80 (see Section 3). This implies an expected
3.9← 17529(1−0.80)

15·60 requests per second to the exit’s resolver.
For the permissive exit we observed about 7.8 requests per
second. As a source of comparison, Sonntag [45, 46] reports
for a DNS resolver dedicated to a 200 Mbit/s exit in 2018 an
average of 18.5 requests per second.

The resolver load for the different preload lists should be
proportional to the estimated number of cache entries shown
in Figure 12. The estimated load for an extended top-1k list
would be similar to current Tor, while the extended top-10k list
would see about a seven-fold increase without changes. This
may or may not be problem. Given the variability of lookups
we observed throughout our data collection (Figure 2) and
reported by Sonntag, resolvers are clearly capable of dealing
with increased loads. Requests due to the preload list should
be predictable, consistent, and cheap in terms of bandwidth
even for a low-capacity exit.

Regardless, the load on resolvers could be lowered by re-
ducing the number of domains, e.g., the increased cache-hit
ratio from top-7k to top-10k is very small (≈1%) for a 20–
30% increase in entries. One could also increase the inter-
nal TTLs, i.e., the frequency of refreshing the entries in the
preload cache. In Tor, this is especially practical since circuits
use random exits. In the rare case of stale data causing is-
sues, simply create a fresh circuit. Serving stale data is not
uncommon in DNS [24], further discussed next in Section 7.

7 Related Work

Van Goethem et al. [48] originally proposed timeless timing
attacks, showing significant improvements against HTTP/2
web servers, Tor onion services, and EAP-pwd. All timeless
timing attacks exploit concurrent processing, e.g., in HTTP/2,
by filling buffers at the relay closest to an onion service, or
packing two authentication requests in EAP-pwd into the
same RadSec (TLS over TCP) packet. The latter was the
inspiration for our timeless timing attack on Tor’s DNS cache,
i.e., packing two RESOLVE cells into a single TLS record.

There has been a long body of work on how to safely per-
form measurements of the Tor network [11,12,18,27], laying
the foundation for safely performing large-scale measure-
ments [19, 28]. Our timeless timing attack enables anyone to
do network-wide measurements for exact domains on specific
exits with a precision of at least one second. This is highly
invasive and a useful resource to deanonymize Tor-users, dis-
cussed further shortly. Our network measurements to inform
the design of defenses have been focused around the DNS in
Tor. Similar to other related work (see below), we focused on
how to make those limited measurements safe; not on how to
broadly perform a much wider range of measurements safely.

Greschbach et al. [13] investigated the effect of DNS on

Tor’s anonymity. They quantified the use of DNS resolvers in
the network, the impact of choice of resolver on correlation
and confirmation attacks, and how to incorporate observed
DNS traffic with website fingerprinting attacks [5, 16, 17,
26, 32, 47] to make improved correlation attacks. In their
construction, DNS traffic is used to either reduce the number
of websites to consider during classification or to confirm
classification. A key observation was that Tor, due to a bug,
clipped all TTLs to 60 seconds. This was resolved and lead to
the current approach of clipping to 300 or 3,600 seconds. One
of our short-time mitigations update these clips to be fuzzy.

Greschbach et al. [13] also measured DNS requests from
an exit for both web and a more permissive exit policy in
2016. The collection was done by observing DNS requests
to the exit’s resolver and aggregating results into five-minute
buckets. Similarly, we aggregate over time in 15-minute buck-
ets and do not directly collect resolved domains. They found
a small difference between exit policies, with the permissive
exit having slightly fewer (3% smaller median) lookups. Our
results are very different: the permissive exit policy resulted
in significantly more (double the median) lookups.

Pulls and Dahlberg [42] generalized the classifier confirma-
tion attack of Greschbach et al. [13] into a new security notion
for website fingerprinting attacks, and further explored the
use of DNS. They showed that timing attacks were possible in
Tor’s DNS cache, performing network-wide measurements on
a domain under their control with a true positive rate of 17.3%
when attempting to minimize false positives. We use a similar
method for measurements, but our attack is significantly better
with a 100% true positive rate and no false positives at all.

Sonntag collected hourly data from the resolver of an exit
during five months in 2018 [45, 46]. In terms of frequency,
they noted about 18.5 requests per second, with a peak of
291,472 requests in an hour. The average is higher than ours
(3.9 and 7.8 requests per second) while the peak significantly
smaller (1,183,275 requests in 15 minutes). Sonntag also ana-
lyzed the actual domains looked up, including categorization
(porn, social network, shopping, advertisement etc). We do
not collect domains; only cache-hits as part of popularity lists
by aggregating domains into buckets like top-100, top-1k, etc.

Mani et al. [28] used PrivCount [18] and PSC [12] to safely
make extensive network-wide measurements of the Tor net-
work. They measured, e.g., circuits, streams, destination ports,
and exit domains at exits, as well as client connections, churn,
composition, and diversity at clients. Their exit probability
ranged between 1.5–2.2%, compared to our peak of 0.1%.
While our data is much more limited and targeted around
DNS, there are two interesting comparisons to consider:

• Mani et al. observed 2.1 billion exit streams inferred in
the network every 24 hours. Extrapolating on our lookup
statistics we have an average of 6.3 billion lookups,
which corresponds to the number of streams4. This sug-

4Streams either do a lookup with RELAY_BEGIN or are closed after a
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gests a significant increase (≈ 3x) in the number of
streams in the Tor network since 2018.

• Mani et al. measured the frequency of how well the
primary domain on a circuit matched the Alexa top-one-
million list. We transform their reported relative counts
and compare it to the relative count of average lookups
in the same intervals in our dataset for top-10k, shown in
Figure 13. Note that this only uses data from phase one
of our data collection. Broadly, we see that their results
show significantly more traffic to top-10 than any of the
lists we use. That said, our data supports one of Mani
et al.’s conclusion that the popularity lists are reasonably
accurate representations of traffic from the Tor network.

The relatively recent RFC 8767 [24] allows for DNS data
to be served “stale”, i.e., after expiry according to its TTL,
in the exceptional circumstance that a recursive resolver is
unable to refresh the information. In case data goes stale, RFC
8767 suggests serving it for at most one to three days. The
background of RFC 8767 aptly motivates this with the saying
that “stale bread is better than no bread”. In addition to serv-
ing potentially stale data, modern resolvers like Unbound [31]
further support prefetching: preemptively refreshing domains
in the cache before TTL expiry. These measures all serve to
improved reliability and have been found to be used for sake
of resiliency [29]. Tor already clips TTLs, in a sense serving
stale data for the vast majority of domains. Our preload design
takes this further by introducing continuous prefetching of
domains on a fixed allowlist.

Two decades ago, Jung et al. [22] found that cache-hit
ratios on the order of 80–87% are achieved if a resolver has
ten or more clients and TTLs are at least ten minutes. More
recently Hao and Wang [15] reported that 100k cached entries
are required to achieve a baseline of 86% cache-hits for a first-
come first-serve cache in a university network. Their dataset
had similar characteristics to a DNS trace collected for an ISP
resolver by Chen et al. [4] with regards to disposable domains
that are never requested more than once in the long-tail of
DNS; out of the 11% of domains that are not disposable, 5%
and 30% of them have cache-hit ratios of at least 95% and
80% respectively. It appears that fewer disposable domains
are resolved in Tor because the observed cache sizes are not
large enough for 89% unique lookups. Achieving an 80%
cache-hit ratio with a cache of 10k entries does not seem to
be an outlier.

8 Conclusion

Our timeless timing attack on Tor’s DNS cache is virtually per-
fect, significantly improving over earlier timing attacks [42].
Based on 12 million measurements in the live Tor network, we

RELAY_RESOLVE cell. Timeout and retries are possible on resolver failure,
but the way we measure hides those extra lookups.

only observed a 0.00025 failure rate due to vanished circuits
and other transient networking errors that are easy to account
for. We responsibly disclosed the attack to the Tor Project and
coordinated the process around defenses with them.

Our proposed mitigations are just that—mitigations—and
do not completely address the underlying issues. The fuzzy
TTLs mitigation primarily addresses confirmation with WF
attacks involving moderately popular domains. Cover lookups,
while valuable if done, does not scale and requires continuous
efforts that are not easily automated on a large scale.

Setting out to find long-term solutions, we landed in re-
designing Tor’s DNS cache completely with a preload design.
To inform the design and to evaluate its feasibility, we ran
a four-month experiment starting in May 2022 measuring
key performance metrics. To ensure that our measurements
were safe, we repeatedly consulted the Tor Research Safety
Board and completed our university ethical review process.
We received positive feedback as well as invaluable sugges-
tions along the way to minimize any potential harm to the Tor
network and its users.

First, the preload design is immune to timing and time-
less attacks due to never sharing any data in the DNS cache
injected due to user activity across circuits. Secondly, the
preload lists of domains based on extended Alexa, extended
Tranco, and Cisco Umbrella all show impressive cache-hit
ratios. Depending on list, it is possible to get comparable
cache-hit ratios, memory usage, and resolver load as Tor today.
More extensive lists can trade modest increases in memory
and resolver load with significantly higher cache-hit ratios,
especially for web traffic. Important future work is improving
how the extended lists are generated—e.g., by tailoring them
specifically for relays in certain regions (location sensitiv-
ity), excluding unique tracking domains, or crawling websites
to discover subdomains—which is likely to lead to higher
cache-hit ratios and smaller lists.

One of the biggest downsides of the preload design is that
the most effective preload lists are extended lists based on
Alexa or Tranco, requiring continuous efforts to update. For-
tunately, our measurements show that even four-month-old
extended lists remain effective with significant improvement
over baseline Tor. It is likely feasible for the Tor Project to
generate and ship hard-coded preload lists as part of regular
Tor releases and still improve performance compared to today.

Like Mani et al. [28], we see that traffic in the Tor network
appears to reasonably match website/domain popularity lists
like Alexa, Tranco, and Umbrella. This is fundamental for
the preload design, and likely also a contributing factor for
the observed long stability of the extended preload lists, since
the most popular sites see relatively little churn [36]. Finally,
our measurements indicate that the Tor network has grown
by about 300% in terms of number of streams since 2018,
and that the large majority of Tor’s current DNS caching is a
privacy harm rather than a cross-circuit performance boost.
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Figure 13: Comparison of relative popularity of popularity rankings with the results of Mani et al. [28].
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Availability

We make the following three artifacts available:

1. Patches to Tor, associated scripts and data, and documen-
tation for performing timeless timing attacks.

2. The measurement data from our two exits, a detailed
timeline of operations, scripts for creating extended
preload lists, and associated Python scripts for parsing all
stats and generating figures. Sharing of the dataset was
discussed as part of the contact with the Tor Research
Safety Board and our university ethical review process.
Relevant parts of our research safety board contact are
included in our artifact.

3. Contributions to the Tor Project, including source code
and associated tooling for our Fuzzy TTLs mitigation
and preload defense.

See https://gitlab.torproject.org/rgdd/ttapd/-/
tree/main/artifact to locate our artifacts and this paper.
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