Ghost Peak: Practical Distance Reduction Attacks Against HRP UWB Ranging


Patrick Leu and Giovanni Camurati, ETH Zurich; Alexander Heinrich, TU Darmstadt; Marc Roeschlin and Claudio Anliker, ETH Zurich; Matthias Hollick, TU Darmstadt; Srdjan Capkun, ETH Zurich; Jiska Classen, TU Darmstadt


We present the first over-the-air attack on IEEE 802.15.4z High-Rate Pulse Repetition Frequency (HRP) Ultra-Wide Band (UWB) distance measurement systems. Specifically, we demonstrate a practical distance reduction attack against pairs of Apple U1 chips (embedded in iPhones and AirTags), as well as against U1 chips inter-operating with NXP and Qorvo UWB chips. These chips have been deployed in a wide range of phones and cars to secure car entry and start and are projected for secure contactless payments, home locks, and contact tracing systems. Our attack operates without any knowledge of cryptographic material, results in distance reductions from 12m (actual distance) to 0m (spoofed distance) with attack success probabilities of up to 4%, and requires only an inexpensive (USD 65) off-the-shelf device. Access control can only tolerate sub-second latencies to not inconvenience the user, leaving little margin to perform time-consuming verifications. These distance reductions bring into question the use of UWB HRP in security-critical applications.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {279984,
title = {Ghost Peak: Practical Distance Reduction Attacks Against {HRP} {UWB} Ranging},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
address = {Boston, MA},
url = {},
publisher = {USENIX Association},
month = aug,