SLAP: Improving Physical Adversarial Examples with Short-Lived Adversarial Perturbations

Authors: 

Giulio Lovisotto, Henry Turner, and Ivo Sluganovic, University of Oxford; Martin Strohmeier, armasuisse; Ivan Martinovic, University of Oxford

Abstract: 

Research into adversarial examples (AE) has developed rapidly, yet static adversarial patches are still the main technique for conducting attacks in the real world, despite being obvious, semi-permanent and unmodifiable once deployed.

In this paper, we propose Short-Lived Adversarial Perturbations (SLAP), a novel technique that allows adversaries to realize physically robust real-world AE by using a projector. Attackers can project specifically crafted adversarial perturbations onto real-world objects, transforming them into AE. This grants adversaries greater control over the attack compared to adversarial patches, as projections can be turned on and off as needed and leave no obvious trace of an attack.

We study the feasibility of SLAP in the self-driving scenario, targeting both object detector and traffic sign recognition tasks, focusing on the detection of stop signs. We conduct experiments in a variety of ambient light conditions, including outdoors, showing how in non-bright settings the proposed method generates AE that are extremely robust, causing misclassifications on state-of-the-art neural networks with up to 99% success rate. Our experiments show that SLAP-generated AE do not present detectable behaviours seen in adversarial patches and therefore bypass SentiNet, a physical AE detection method. We evaluate other defences including an adaptive defender using adversarial learning which is able to thwart the attack effectiveness up to 80% even in favourable attacker conditions.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {272218,
author = {Giulio Lovisotto and Henry Turner and Ivo Sluganovic and Martin Strohmeier and Ivan Martinovic},
title = {{SLAP}: Improving Physical Adversarial Examples with {Short-Lived} Adversarial Perturbations},
booktitle = {30th USENIX Security Symposium (USENIX Security 21)},
year = {2021},
isbn = {978-1-939133-24-3},
pages = {1865--1882},
url = {https://www.usenix.org/conference/usenixsecurity21/presentation/lovisotto},
publisher = {USENIX Association},
month = aug
}

Presentation Video