Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-Located Workshops
  • Program
    • At a Glance
    • Technical Sessions
    • Poster Session
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
    • WiPs
  • Participate
    • Call for Papers
      • Important Dates
      • Symposium Organizers
      • Symposium Topics
      • Refereed Papers
      • Shadow PC
      • Symposium Activities
      • Submitting Papers
    • Instructions for Participants
  • Sponsorship
  • About
    • Symposium Organizers
    • Services
    • Questions
    • Help Promote!
    • Past Symposia
  • Home
  • Attend
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-Located Workshops
  • Program
  • Activities
  • Participate
    • Call for Papers
    • Instructions for Participants
  • Sponsorship
  • About
    • Symposium Organizers
    • Services
    • Questions
    • Help Promote!
    • Past Symposia

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX Security '16 button

Get more
Help Promote graphics!

connect with usenix


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by USENIXSecurity

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Control-Flow Bending: On the Effectiveness of Control-Flow Integrity
Tweet

connect with us

Control-Flow Bending: On the Effectiveness of Control-Flow Integrity

Authors: 

Nicholas Carlini, University of California, Berkeley; Antonio Barresi, ETH Zürich; Mathias Payer, Purdue University; David Wagner, University of California, Berkeley; Thomas R. Gross, ETH Zürich

Abstract: 

Control-Flow Integrity (CFI) is a defense which prevents control-flow hijacking attacks. While recent research has shown that coarse-grained CFI does not stop attacks, fine-grained CFI is believed to be secure.

We argue that assessing the effectiveness of practical CFI implementations is non-trivial and that common evaluation metrics fail to do so. We then evaluate fullyprecise static CFI — the most restrictive CFI policy that does not break functionality — and reveal limitations in its security. Using a generalization of non-control-data attacks which we call Control-Flow Bending (CFB), we show how an attacker can leverage a memory corruption vulnerability to achieve Turing-complete computation on memory using just calls to the standard library. We use this attack technique to evaluate fully-precise static CFI on six real binaries and show that in five out of six cases, powerful attacks are still possible. Our results suggest that CFI may not be a reliable defense against memory corruption vulnerabilities.

We further evaluate shadow stacks in combination with CFI and find that their presence for security is necessary: deploying shadow stacks removes arbitrary code execution capabilities of attackers in three of six cases.

Nicholas Carlini, University of California, Berkeley

Antonio Barresi, ETH Zürich

Mathias Payer, Purdue University

David Wagner, University of California, Berkeley

Thomas R. Gross, ETH Zürich

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Carlini PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Open access to the USENIX Security '15 videos sponsored by Symantec.

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us