Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '14 Home
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Students and Grants
  • Co-located Workshops
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Heading Off Correlated Failures through Independence-as-a-Service
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Heading Off Correlated Failures through Independence-as-a-Service

Thursday, August 7, 2014 - 1:45pm
Authors: 

Ennan Zhai, Yale University; Ruichuan Chen, Bell Labs and Alcatel-Lucent; David Isaac Wolinsky and Bryan Ford, Yale University

Abstract: 

Today’s systems pervasively rely on redundancy to ensure reliability. In complex multi-layered hardware/software stacks, however – especially in the clouds where many independent businesses deploy interacting services on common infrastructure – seemingly independent systems may share deep, hidden dependencies, undermining redundancy efforts and introducing unanticipated correlated failures. Complementing existing post-failure forensics, we propose Independence-as-a-Service (or INDaaS), an architecture to audit the independence of redundant systems proactively, thus avoiding correlated failures. INDaaS first utilizes pluggable dependency acquisition modules to collect the structural dependency information (including network, hardware, and software dependencies) from a variety of sources. With this information, INDaaS then quantifies the independence of systems of interest using pluggable auditing modules, offering various performance, precision, and data secrecy tradeoffs. While the most general and efficient auditing modules assume the auditor is able to obtain all required information, INDaaS can employ private set intersection cardinality protocols to quantify the independence even across businesses unwilling to share their full structural information with anyone. We evaluate the practicality of INDaaS with three case studies via auditing realistic network, hardware, and software dependency structures.

Ennan Zhai, Yale University

Ruichuan Chen, Bell Labs and Alcatel-Lucent

David Isaac Wolinsky, Yale University

Bryan Ford, Yale University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {186179,
author = {Ennan Zhai and Ruichuan Chen and David Isaac Wolinsky and Bryan Ford},
title = {Heading Off Correlated Failures through {Independence-as-a-Service}},
booktitle = {11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)},
year = {2014},
isbn = { 978-1-931971-16-4},
address = {Broomfield, CO},
pages = {317--334},
url = {https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhai},
publisher = {USENIX Association},
month = oct,
}
Download
Zhai PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us