Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '14 Home
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Students and Grants
  • Co-located Workshops
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Physical Disentanglement in a Container-Based File System
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Physical Disentanglement in a Container-Based File System

Thursday, August 7, 2014 - 12:30pm
Authors: 

Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Abstract: 

We introduce IceFS, a novel file system that separates physical structures of the file system. A new abstraction, the cube, is provided to enable the grouping of files and directories inside a physically isolated container. We show three major benefits of cubes within IceFS: localized reaction to faults, fast recovery, and concurrent filesystem updates. We demonstrate these benefits within a VMware-based virtualized environment and within the Hadoop distributed file system. Results show that our prototype can significantly improve availability and performance, sometimes by an order of magnitude.

Lanyue Lu, University of Wisconsin—Madison

Yupu Zhang, University of Wisconsin—Madison

Thanh Do, University of Wisconsin—Madison

Samer Al-Kiswany, University of Wisconsin—Madison

Andrea C. Arpaci-Dusseau, University of Wisconsin—Madison

Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {186151,
author = {Lanyue Lu and Yupu Zhang and Thanh Do and Samer Al-Kiswany and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau},
title = {Physical Disentanglement in a {Container-Based} File System},
booktitle = {11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)},
year = {2014},
isbn = { 978-1-931971-16-4},
address = {Broomfield, CO},
pages = {81--96},
url = {https://www.usenix.org/conference/osdi14/technical-sessions/presentation/lu},
publisher = {USENIX Association},
month = oct,
}
Download
Lu PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us