Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '14 Home
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Students and Grants
  • Co-located Workshops
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Detecting Covert Timing Channels with Time-Deterministic Replay
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Detecting Covert Timing Channels with Time-Deterministic Replay

Thursday, August 7, 2014 - 3:15pm
Authors: 

Ang Chen, University of Pennsylvania; W. Brad Moore, Georgetown University; Hanjun Xiao, Andreas Haeberlen, and Linh Thi Xuan Phan, University of Pennsylvania; Micah Sherr and Wenchao Zhou, Georgetown University

Abstract: 

This paper presents a mechanism called timedeterministic replay (TDR) that can reproduce the execution of a program, including its precise timing. Without TDR, reproducing the timing of an execution is difficult because there are many sources of timing variability – such as preemptions, hardware interrupts, cache effects, scheduling decisions, etc. TDR uses a combination of techniques to either mitigate or eliminate most of these sources of variability. Using a prototype implementation of TDR in a Java Virtual Machine, we show that it is possible to reproduce the timing to within 1.85% of the original execution, even on commodity hardware.

The paper discusses several potential applications of TDR, and studies one of them in detail: the detection of a covert timing channel. Timing channels can be used to exfiltrate information from a compromised machine; they work by subtly varying the timing of the machine’s outputs, and it is this variation that can be detected with TDR. Unlike prior solutions, which generally look for a specific type of timing channel, our approach can detect a wide variety of channels with high accuracy.

Ang Chen, University of Pennsylvania

W. Brad Moore, Georgetown University

Hanjun Xiao, University of Pennsylvania

Andreas Haeberlen, University of Pennsylvania

Linh Thi Xuan Phan, University of Pennsylvania

Micah Sherr, Georgetown University

Wenchao Zhou, Georgetown University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {186208,
author = {Ang Chen and W. Brad Moore and Hanjun Xiao and Andreas Haeberlen and Linh Thi Xuan Phan and Micah Sherr and Wenchao Zhou},
title = {Detecting Covert Timing Channels with {Time-Deterministic} Replay},
booktitle = {11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)},
year = {2014},
isbn = { 978-1-931971-16-4},
address = {Broomfield, CO},
pages = {541--554},
url = {https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_ang},
publisher = {USENIX Association},
month = oct,
}
Download
Chen PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us