Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '12 Home
  • Organizers
  • Registration Information
  • Registration Discounts
  • At a Glance
  • Calendar
  • Technical Sessions
  • Workshops
  • Poster Sessions and Receptions
  • Birds-of-a-Feather Sessions
  • Sponsors
  • Activities
  • Hotel and Travel Information
  • Services
  • Students
  • Questions
  • Help Promote
  • For Participants
  • Call for Papers
  • Past Proceedings

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » MegaPipe: A New Programming Interface for Scalable Network I/O
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/events/284007718333937/
http://www.linkedin.com/groups/USENIX-Association-49559/about
http://www.youtube.com/user/USENIXAssociation

MegaPipe: A New Programming Interface for Scalable Network I/O

Authors: 

Sangjin Han and Scott Marshall, University of California, Berkeley; Byung-Gon Chun, Yahoo! Research; Sylvia Ratnasamy, University of California, Berkeley

Abstract: 

We present MegaPipe, a new API for efficient, scalable network I/O for message-oriented workloads. The design of MegaPipe centers around the abstraction of a channel—a per-core, bidirectional pipe between the kernel and user space, used to exchange both I/O requests and event notifications. On top of the channel abstraction, we introduce three key concepts of MegaPipe: partitioning, lightweight socket (lwsocket), and batching.

We implement MegaPipe in Linux and adapt memcached and nginx. Our results show that, by embracing a clean-slate design approach, MegaPipe is able to exploit new opportunities for improved performance and ease of programmability. In microbenchmarks on an 8-core server with 64 B messages, MegaPipe outperforms baseline Linux between 29% (for long connections) and 582% (for short connections). MegaPipe improves the performance of a modified version of memcached between 15% and 320%. For a workload based on real-world HTTP traces, MegaPipe boosts the throughput of nginx by 75%.

Sangjin Han, University of California, Berkeley

Scott Marshall, University of California, Berkeley

Byung-Gon Chun, Yahoo! Research

Sylvia Ratnasamy, University of California, Berkeley

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Han PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us