MegaPipe: A New Programming Interface

for Scalable Network /O

Sangjin Han

in collaboration with

;
A

Scott Marshall Byung-Gon Chun Sylvia Ratnasamy

University of California, Berkeley Yahoo! Research

MegaPipe is a new network programming API
for message-oriented workloads

to avoid the performance issues of BSD Socket API

0SDI 2012 7

Two Types of Network Workloads

1. Bulk-transfer workload

= One way, large data transfer
= Ex:video streaming, HDFS

= Verycheap
= Ahalf CPU core is enough to saturate a 10G link

0SDI 2012 3

Two Types of Network Workloads

1. Bulk-transfer workload

One way, large data transfer
Ex: video streaming, HDFS

Very cheap
A half CPU core is enough to saturate a 10G link

2. Message-oriented workload

— Short connections or small messages
e Ex:HTTP, RPC, DB, key-value stores, ...

— CPU-intensive!

OSDI 2012 4

BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness

for (..) {
new fd =11'sten_fd) : // new connection

bytes =fd2, buf, 4096); //new data for fd2

" [ssues with message-oriented workloads
= System call overhead <=

0SDI 2012 5

BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness

for (..) {
new fd = accept(listen fd}; // new connection

bytes = recv(fd2, buf, 4096); //new dataforfd2

" [ssues with message-oriented workloads
= System call overhead
= Shared listening socket {=

0SDI 2012 6

BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness
for (..) {

= accept(listen _fd); // new connection

bytes = recv(fd2, buf, 4096); //new dataforfd2

" [ssues with message-oriented workloads
= System call overhead
= Shared listening socket
= File abstraction overhead 4=

0SDI 2012 -

Microbenchmark: How Bad?

RPC-like test on an 8-core Linux server (with epoll)

768 Clients Server 3. Number of cores

new TCP connection

request (64B)

i 2. Connection length
| /
k l

response (64B) ™ 10 transactions

Teardown J 1. Message size

0SDI 2012 3

1. Small Messages Are Bad

E2Throughput 1+CPU Usage
10 - - 100
00—

7w 8 - 80
S Q)
5 S
= 6 - 60 g
= 3
= -
4 - - 40 D
= o
o @)
= 2 - I - 20

0 [| - l | | | - 0

128 256 512 2K 4K 8K | 16K

Low throughput Message Size (B) High overhead

0SDI 2012 9

2. Short Connections Are Bad

1.5 1
G ll
.
=
S 12 -
~
&
S
=
g 09°
s 19x lower
= 06 1
~
-
=
-
X 0.3 -
e
Yo
=
O 1

1 2 4 8 16 32 64 128

Number of Transactions per Connection
OSDI 2012 10

3. Multi-Core Will Not Help (Much)

[
W
]

Q . Y
2 ldeal scaling

= 1.2 -

= -

o -

: -7

s 0.9 - -
E P Actual scaling
= 0.6 =

~

=]

=

)

0 0.3

e

P

-

=

5 6 7 8
of CPU Cores

OSDI 2012 11

MEGAPIPE DESIGN

OSDI 2012

12

Design Goals

= Concurrency as a first-class citizen

= Unified interface for various I/O types

= Network connections, disk files, pipes, signals, etc.

" Low overhead & multi-core scalability

= Main focus of this presentation

0SDI 2012 13

Overview

Problem

per-core
performance

multi-core
scalability

OSDI 2012

Cause

System call
overhead

listening
socket

VFS
overhead

Solution

System call
batching

socket
partitioning

Lightweight
socket

14

= Handle

= Similar to file descriptor
= But only valid within a channel

= TCP connection, pipe, disk file, ...

"= Channel
= Per-core, bidirectional pipe between user and kernel
= Multiplexes |/O operations of its handles

OSDI 2012 15

Sketch: How Channels Help (1/3)

User

Handles s [[[[

=~ < 1/0 Batching

Channel mmp I

Kernel

OSDI 2012 16

Sketch: How Channels Help (2/3)

Core 1 Core 2 Core 3
e HEEEN 11

NPz

Shared accept queue
7 TN\

New connections

0SDI 2012 17

Sketch: How Channels Help (2/3)

Core 1 Core 2 Core 3
NEEN e NN

4 4 4

- Listening
U ‘ socket
partitioning

New connections

OSDI 2012 18

Sketch: How Channels Help (3/3)

Core 1 Core 2 Core 3
NEEN e NN

VEs mog e U B g U

OSDI 2012 19

Sketch: How Channels Help (3/3)

Core 1 Core 2 Core 3
1y 1

EEEE HEEE ¢ Lighktweight
socket

VES

OSDI 2012 20

MegaPipe APl Functions

= mp_create() / mp_destroy()
= Create/close a channel

= mp_register() / mp_unregister()

= Register a handle (regular FD or lwsocket) into a channel

= mp_accept() /mp _read() / mp_write() / ...

= |ssue an asynchronous |/O command for a given handle

= mp_dispatch()

= Dispatch an I/O completion event from a channel

0SDI 2012 1

Completion Notification Model

= BSD Socket API = MegaPipe
= Wait-and-Go = Go-and-Wait
(Readiness model) (Completion notification)

epoll ctl(fdl, EPOLLIN);
epoll ctl(fd2, EPOLLIN);
epoll wait(..);

ev = mp_dispatch(channel);

recv(fdl, ..);

ev = mp_dispatch(channel);
recv(fd2, ..);

© Batching
© Easy and intuitive
© Compatible with disk files

OSDI 2012 22

1. 1/O Batching

" Transparent batching
= Exploits parallelism of independent handles

Application

MegaPipe User-Level Library

Read data from handle 6 New connection arrived
Write done to handle 5 Batched
system calls

Accept a new connection
Read data from handle 3 Read done from handle 6

Write data to handle 5

MegaPipe Kernel Module

OSDI 2012 23

2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |[nstead of the globally shared accept queue

mp_register()

User

Kernel

0SDI 2012 24

2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |[nstead of the globally shared accept queue

mp_register()

N

e e

User

Kernel

0SDI 2012 75

2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |[nstead of the globally shared accept queue

mp_accept() i i i User

Kernel

New connections

OSDI 2012 26

3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor

|

File instance
(states)

!

dentry Pl inode

File name? l
TCP socket

0SDI 2012 27

3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor File descriptor

l dup() or fork()

File instance |¢
(states)

!

dentry Pl inode

!

TCP socket

OSDI 2012 28

3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor File descriptor

l l open()

File instance File instance
(states) (states)

!

dentry Pl inode |4

!

TCP socket

OSDI 2012 29

3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor lwsocket

A 4
TCP socket TCP socket

OSDI 2012 30

EVALUATION

OSDI 2012

31

Microbenchmark 1/2

" Throughput improvement with various message sizes

120

100

80

60

40

20

Throughput Improvement (%)

of CPU Cores
OSDI 2012 32

Microbenchmark 1/2

" Throughput improvement with various message sizes

120

100

80

60

40

20

Throughput Improvement (%)

of CPU Cores
OSDI 2012 33

Microbenchmark 1/2

" Throughput improvement with various message sizes

120

100

80

60

40

20

Throughput Improvement (%)

of CPU Cores
0SDI 2012 34

Microbenchmark 2/2

= Multi-core scalability

= with various connection lengths (# of transactions)

Baseline MegaPipe
8 - 8 -
7 - . 128 7
= o
5 6- 64]
S
& O 5
= 4 4
s
g 3 3
2 2
1 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of CPU Cores # of CPU Cores

0SDI 2012 35

Macrobenchmark

" memcached
= [n-memory key-value store
= Limited scalability

= Object store is shared by all cores with a global lock

" nginx
= Web server
= Highly scalable

= Nothing is shared by cores, except for the listening socket

OSDI 2012 36

memcached

= memaslap with 90% GET, 10% SET, 64B keys, 1KB values

1050 -
2 900 A
S
% 750
~ _ 0= MegaPipe
2 600 B B
= o 103y .o
a 450 A o A o
= D oax
= 300 1 3.0x Global lock bottleneck
=] d : .I:]-
= o
= 150 736x o

o
O I |

1 2 3 4 5 6 7 8 9 10

Number of Requests per Connection
0SDI 2012 37

memcached

= memaslap with 90% GET, 10% SET, 64B keys, 1KB values

1050 7 —>= MegaPipe-FL
% 900 - ~x Baseline-FL
)
% 750
S 600 - > MegaPipe
\) -0 Baseline
s 450 -
=y
o
= 300 A
£
= 150

0 | | |

1 2 4 8§ 16 32 64 128 256 oo

Number of Requests per Connection
OSDI 2012 38

= Based on Yahoo! HTTP traces: 6.3KiB, 2.3 trans/conn on avg.

20 -
I Improvement
~ 16 7 |7°"MegaPipe
=P . —
@ ~4Baseline
= 12 7
5 o]
=P /
fb Q - Lo e
g = | T
ﬁ ,o’/ o il
4 - |t
O,/A
o
0
1 2 3 4 5
of CPU Cores

OSDI 2012

100

80
S

60 E
£
S

40 8
=
£
e

20

0

39

CONCLUSION

OSDI 2012

40

Related Work

= Batching [FlexSC, OSDI'10] [libflexsc, ATC'11]
= Exception-less system call
= MegaPipe solves the scalability issues

= Partitioning [Affinity-Accept, EuroSys’12]
" Per-core accept queue
= MegaPipe provides explicit control over partitioning

= VFS scalability [Mosbench, OSDI’10]
= MegaPipe bypasses the issues rather than mitigating

OSDI 2012 a1

Conclusion

= Short connections or small messages:
= High CPU overhead
= Poorly scaling with multi-core CPUs

= MegaPipe
= Key abstraction: per-core channel

= Enabling three optimization opportunities:
= Batching, partitioning, lwsocket

" 15+% improvement for memcached, 75% for nginx

OSDI 2012 42

BACKUP SLIDES

OSDI 2012

43

Throughput (1M trans/s)

OSDI 2012

Small Messages with MegaPipe

L Baseline Throughput B MegaPipe

1.5 1

0.6 1

8 16 32 64 128

of Transactions per Connection
44

1. Small Messages Are Bad =2 Why?

= # of messages matters, not the volume of traffic

" Per-message cost >>> per-byte cost
= 1KB msg is only 2% more expensive than 64B msg

= 10G link with 1KB messages = 1M |IOPS!

* Thus 1M+ system calls

= System calls are expensive [Flexsc, 2010]
= Mode switching between kernel and user

= CPU cache pollution

OSDI 2012 45

Short Connections with MegaPipe

——Baseline CPU Usage -a-MegaPipe
10 1 g, Acveeerannnnn. Psoenneereenees A . — 100
2 - 80 _
d :
g5 ° 60 &
= 3
5 -
2 47 - 40 =2
= =
= @)
B I - 20
0 | | | | | | "

64 128 256 512 1K 2K 4K 8K 16K
Message Size (B)

0SDI 2012 46

2. Short Connections Are Bad = Why?

= Connection establishment is expensive
= Three-way handshaking / four-way teardown

* More packets
= More system calls: accept(), epoll_ctl(), close(), ...
= Socket is represented as a file in UNIX

= File overhead
= VFS overhead

OSDI 2012 47

Multi-Core Scalability with MegaPipe

——Baseline Per-Core Efficiency & MegaPipe

1.5 100
% 1.2 T R0
£ S
5 0.9 1 60 %
z

_ D)
2 06 40 =
2F =
=]
= 03 20
e
0 0

of CPU Cores

0SDI 2012 48

3. Multi-Core Will Not Help = Why?

= Shared queue issues [Affinity-Accept, 2012]
= Contention on the listening socket
= Poor connection affinity

User

Kernel

0SDI 2012 49

3. Multi-Core Will Not Help = Why?

= File/VFS multi-core scalability issues

Application

... l

Process
file descriptor table Shared by threads
VES File instance
l Globally visible
dentr 4’| inode :
y l in the system
TCP/IP TCP socket

0SDI 2012 50

Overview

User application thread

l MegaPipe API T

MegaPipe user-level library

Batched Batchgd
completion
async I/O
events
commands
__________________________ Channel instance Pending
Core 1 Core2 ... CoreN lwsocket File completion
handles handles events
|
v
i VES
TCP/IP

Linux kernel
OSDI 2012 51

Ping-Pong Server Example

ch = mp create()
handle = mp register(ch, listen_sd, mask=my cpu_id)
mp accept(handle)

while true:
ev = mp dispatch(ch)
conn = ev.cookie
1T ev.cmd == ACCEPT:
mp accept(conn.handle)
conn = new Connection()
conn.handle = mp register(ch, ev.fd, cookie=conn)
mp read(conn.handle, conn.buf, READSIZE)
elif ev.cmd == READ:
mp write(conn.handle, conn.buf, ev.size)
elif ev.cmd == WRITE:
mp read(conn.handle, conn.buf, READSIZE)
el1f ev.cmd == DISCONNECT:
mp unregister(ch, conn.handle)

05D! 2012 delete conn -

Contribution Breakdown

Number of transactions per connection

| 2 2! 8 16 32 64| 128

+P | 211.6| 207.5| 181.3| 83.5| 389 295 17.2] 8.8

P +B 18.8| 228 72.4| 44.6| 31.8| 304| 27.3| 19.8
PB +L | 352.1| 230.5| 793} 22.0| 97| 29| 04| 0.1
Total | 582.4| 460.8| 333.1| 150.1| 80.4| 62.8| 45.0| 28.7

Table 3: Accumulation of throughput improvement (%) over
baseline, from three contributions of MegaPipe.

OSDI 2012

53

memcached latency

3500 - .
~ Baseline-FL 999 AN
3000 - aseline) AAAAA PP
© MegaPipe-FL 99% e
_ "
— 2500 + Baseline-FL 50% AnDE
(g. AA AAA OOOOO
< 2000 | | X MegaPipe-FL 50% b P
g VA OOOOOO
< 1500 é@ OOOOooOOOO ++y§§§§
. AAASS% kkﬁzﬁz***jzxx
Ao "
1000 - . AAééOQOO Xgﬁ*xxxxx
gooo A~oO %X%X%
@O0 g
200 - o xxkiii%tﬁk
O SORKKHRKK
0 | . | | | |

0 256 512 768 1024 1280 1536
of Concurrent Client Connections

OSDI 2012 9

Clean-Slate vs. Dirty-Slate

= MegaPipe: a clean-slate approach with new APIs
" Quick prototyping for various optimizations
= Performance improvement: worthwhile!

= Can we apply the same techniques back to the
BSD Socket API?

= Each technique has its own challenges
= Embracing all could be even harder

= Future Work™

0OSsDI 2012 55

