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MegaPipe is a new network programming API
for message-oriented workloads

to avoid the performance issues of BSD Socket API
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Two Types of Network Workloads

1. Bulk-transfer workload

= One way, large data transfer
= Ex:video streaming, HDFS

= Verycheap
= Ahalf CPU core is enough to saturate a 10G link
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Two Types of Network Workloads

1. Bulk-transfer workload

One way, large data transfer
Ex: video streaming, HDFS

Very cheap
A half CPU core is enough to saturate a 10G link

2. Message-oriented workload

— Short connections or small messages
e Ex:HTTP, RPC, DB, key-value stores, ...

— CPU-intensive!
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BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness

for (..) {
new fd =11'sten_fd) : // new connection

bytes =fd2, buf, 4096); //new data for fd2

" [ssues with message-oriented workloads
= System call overhead <=
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BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness

for (..) {
new fd = accept(listen fd}; // new connection

bytes = recv(fd2, buf, 4096); //new dataforfd2

" [ssues with message-oriented workloads
= System call overhead
= Shared listening socket {=
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BSD Socket APl Performance Issues

n_events = epoll wait(..); //waitforl/O readiness
for (..) {

= accept(listen _fd); // new connection

bytes = recv(fd2, buf, 4096); //new dataforfd2

" [ssues with message-oriented workloads
= System call overhead
= Shared listening socket
= File abstraction overhead 4=
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Microbenchmark: How Bad?

RPC-like test on an 8-core Linux server (with epoll)

768 Clients Server 3. Number of cores

new TCP connection

request (64B)

i 2. Connection length
| /
k l

response (64B) ™ 10 transactions

Teardown J 1. Message size
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1. Small Messages Are Bad
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2. Short Connections Are Bad
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3. Multi-Core Will Not Help (Much)
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MEGAPIPE DESIGN
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Design Goals

= Concurrency as a first-class citizen

= Unified interface for various I/O types

= Network connections, disk files, pipes, signals, etc.

" Low overhead & multi-core scalability

= Main focus of this presentation
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Overview

Problem

per-core
performance

multi-core
scalability
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Cause

System call
overhead

listening
socket

VFS
overhead

Solution

System call
batching

socket
partitioning

Lightweight
socket
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= Handle

= Similar to file descriptor
= But only valid within a channel

= TCP connection, pipe, disk file, ...

"= Channel
= Per-core, bidirectional pipe between user and kernel
= Multiplexes |/O operations of its handles
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Sketch: How Channels Help (1/3)
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Sketch: How Channels Help (2/3)
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Sketch: How Channels Help (2/3)
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Sketch: How Channels Help (3/3)
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Sketch: How Channels Help (3/3)
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MegaPipe APl Functions

= mp_create() / mp_destroy()
= Create/close a channel

= mp_register() / mp_unregister()

= Register a handle (regular FD or lwsocket) into a channel

= mp_accept() /mp _read() / mp_write() / ...

= |ssue an asynchronous |/O command for a given handle

= mp_dispatch()

= Dispatch an I/O completion event from a channel
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Completion Notification Model

= BSD Socket API = MegaPipe
= Wait-and-Go = Go-and-Wait
(Readiness model) (Completion notification)

epoll ctl(fdl, EPOLLIN);
epoll ctl(fd2, EPOLLIN);
epoll wait(..);

ev = mp_dispatch(channel);

recv(fdl, ..);

ev = mp_dispatch(channel);
recv(fd2, ..);

© Batching
© Easy and intuitive
© Compatible with disk files
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1. 1/O Batching

" Transparent batching
= Exploits parallelism of independent handles

Application

MegaPipe User-Level Library

Read data from handle 6 New connection arrived
Write done to handle 5 Batched
system calls

Accept a new connection
Read data from handle 3 Read done from handle 6

Write data to handle 5

MegaPipe Kernel Module
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2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |[nstead of the globally shared accept queue

mp_register()

User

Kernel
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2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |[nstead of the globally shared accept queue

mp_register()

N

e e

User

Kernel
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2. Listening Socket Partitioning

= Per-core accept queue for each channel
" |[nstead of the globally shared accept queue

mp_accept() i i i User

Kernel

New connections
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3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor

|

File instance
(states)

!

dentry Pl inode

File name? l
TCP socket
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3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor  File descriptor

l dup() or fork()

File instance |¢
(states)

!

dentry Pl inode

!

TCP socket
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3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor  File descriptor

l l open()

File instance File instance
(states) (states)

!

dentry Pl inode |4

!

TCP socket
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3. lwsocket: Lightweight Socket

= Common-case optimization for sockets

= Sockets are ephemeral and rarely shared
= Bypass the VFS layer
= Convert into a regular file descriptor only when necessary

File descriptor lwsocket

A 4
TCP socket TCP socket
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EVALUATION
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Microbenchmark 1/2

" Throughput improvement with various message sizes
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Microbenchmark 1/2

" Throughput improvement with various message sizes
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Microbenchmark 2/2

= Multi-core scalability

= with various connection lengths (# of transactions)
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Macrobenchmark

" memcached
= [n-memory key-value store
= Limited scalability

= Object store is shared by all cores with a global lock

" nginx
= Web server
= Highly scalable

= Nothing is shared by cores, except for the listening socket
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memcached

= memaslap with 90% GET, 10% SET, 64B keys, 1KB values
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memcached

= memaslap with 90% GET, 10% SET, 64B keys, 1KB values
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= Based on Yahoo! HTTP traces: 6.3KiB, 2.3 trans/conn on avg.
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CONCLUSION

OSDI 2012
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Related Work

= Batching [FlexSC, OSDI'10] [libflexsc, ATC'11]
= Exception-less system call
= MegaPipe solves the scalability issues

= Partitioning [Affinity-Accept, EuroSys’12]
" Per-core accept queue
= MegaPipe provides explicit control over partitioning

= VFS scalability [Mosbench, OSDI’10]
= MegaPipe bypasses the issues rather than mitigating
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Conclusion

= Short connections or small messages:
= High CPU overhead
= Poorly scaling with multi-core CPUs

= MegaPipe
= Key abstraction: per-core channel

= Enabling three optimization opportunities:
= Batching, partitioning, lwsocket

" 15+% improvement for memcached, 75% for nginx
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BACKUP SLIDES
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Throughput (1M trans/s)
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1. Small Messages Are Bad =2 Why?

= # of messages matters, not the volume of traffic

" Per-message cost >>> per-byte cost
= 1KB msg is only 2% more expensive than 64B msg

= 10G link with 1KB messages = 1M |IOPS!

* Thus 1M+ system calls

= System calls are expensive [Flexsc, 2010]
= Mode switching between kernel and user

= CPU cache pollution
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Short Connections with MegaPipe
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2. Short Connections Are Bad = Why?

= Connection establishment is expensive
= Three-way handshaking / four-way teardown

* More packets
= More system calls: accept(), epoll_ctl(), close(), ...
= Socket is represented as a file in UNIX

= File overhead
= VFS overhead

OSDI 2012 47



Multi-Core Scalability with MegaPipe

——Baseline Per-Core Efficiency & MegaPipe
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3. Multi-Core Will Not Help = Why?

= Shared queue issues [Affinity-Accept, 2012]
= Contention on the listening socket
= Poor connection affinity

User

Kernel
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3. Multi-Core Will Not Help = Why?

= File/VFS multi-core scalability issues

Application

................................................. l

Process
file descriptor table Shared by threads
VES File instance
l Globally visible
dentr 4’| inode :
y l in the system
TCP/IP TCP socket
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Overview

User application thread

l MegaPipe API T

MegaPipe user-level library

Batched Batchgd
completion
async I/O
events
commands
__________________________ Channel instance Pending
Core 1 Core2 ... CoreN lwsocket File completion
handles handles events
|
v
i VES
TCP/IP

Linux kernel
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Ping-Pong Server Example

ch = mp create()
handle = mp register(ch, listen_sd, mask=my cpu_id)
mp accept(handle)

while true:
ev = mp dispatch(ch)
conn = ev.cookie
1T ev.cmd == ACCEPT:
mp accept(conn.handle)
conn = new Connection()
conn.handle = mp register(ch, ev.fd, cookie=conn)
mp read(conn.handle, conn.buf, READSIZE)
elif ev.cmd == READ:
mp write(conn.handle, conn.buf, ev.size)
elif ev.cmd == WRITE:
mp read(conn.handle, conn.buf, READSIZE)
el1f ev.cmd == DISCONNECT:
mp unregister(ch, conn.handle)
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Contribution Breakdown

Number of transactions per connection

| 2 2! 8 16 32 64| 128

+P | 211.6| 207.5| 181.3| 83.5| 389 295 17.2] 8.8

P +B 18.8| 228 72.4| 44.6| 31.8| 304| 27.3| 19.8
PB +L | 352.1| 230.5| 793} 22.0| 97| 29| 04| 0.1
Total | 582.4| 460.8| 333.1| 150.1| 80.4| 62.8| 45.0| 28.7

Table 3: Accumulation of throughput improvement (%) over
baseline, from three contributions of MegaPipe.
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memcached latency
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Clean-Slate vs. Dirty-Slate

= MegaPipe: a clean-slate approach with new APIs
" Quick prototyping for various optimizations
= Performance improvement: worthwhile!

= Can we apply the same techniques back to the
BSD Socket API?

= Each technique has its own challenges
= Embracing all could be even harder

= Future Work™
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