Larry: Practical Network Reconfigurability in the Data Center


Andromachi Chatzieleftheriou, Sergey Legtchenko, Hugh Williams, and Antony Rowstron, Microsoft Research


Modern data center (DC) applications require high crossrack network bandwidth and ultra-low, predictable end-to-end latency. It is hard to meet these requirements in traditional DC networks where the bandwidth between a Top-of-Rack (ToR) switch and the rest of the DC is typically oversubscribed.

Larry is a network design that allows racks to dynamically adapt their bandwidth to the aggregation switches as a function of the traffic demand. Larry reconfigures the network topology to enable racks with high demand to use underutilized uplinks from their neighbors. Operating at the physical layer, Larry has a predictably low traffic forwarding overhead that is adapted to latency sensitive applications. Larry is effective even when deployed on a small set of racks (e.g., 4) because rack traffic demand is not correlated in many DC workloads. It can be deployed incrementally and transparently co-exist with existing non-reconfigurable racks. Our prototype uses a 40 Gbps electrical circuit switch we have built, with a simply local control plane. Using multiple workloads, we show that Larry improves tail latency by to 2.3x for the same network cost.

NSDI '18 Open Access Videos Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {211235,
author = {Andromachi Chatzieleftheriou and Sergey Legtchenko and Hugh Williams and Antony Rowstron},
title = {Larry: Practical Network Reconfigurability in the Data Center},
booktitle = {15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18)},
year = {2018},
isbn = {978-1-939133-01-4},
address = {Renton, WA},
pages = {141--156},
url = {},
publisher = {USENIX Association},
month = apr

Presentation Video