Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session and Happy Hour
  • Program
    • At a Glance
    • Technical Sessions
  • Sponsorship
  • Participate
    • Instructions for Participants
    • Call for Papers
    • Call for Posters
  • About
    • Organizers
    • Help Promote
    • Questions
    • Past Symposia
  • Home
  • Attend
  • Activities
  • Program
  • Sponsorship
  • Participate
  • About

sponsors

Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

help promote

NSDI '16 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Compiling Path Queries
Tweet

connect with us

Compiling Path Queries

Authors: 

Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker, Princeton University

Abstract: 

Measuring the flow of traffic along network paths is crucial for many management tasks, including traffic engineering, diagnosing congestion, and mitigating DDoS attacks. We introduce a declarative query language for efficient path-based traffic monitoring. Path queries are specified as regular expressions over predicates on packet locations and header values, with SQLlike “groupby” constructs for aggregating results anywhere along a path. A run-time system compiles queries into a deterministic finite automaton. The automaton’s transition function is then partitioned, compiled into match-action rules, and distributed over the switches. Switches stamp packets with automaton states to track the progress towards fulfilling a query. Only when packets satisfy a query are the packets counted, sampled, or sent to collectors for further analysis. By processing queries in the data plane, users “pay as they go”, as data-collection overhead is limited to exactly those packets that satisfy the query. We implemented our system on top of the Pyretic SDN controller and evaluated its performance on a campus topology. Our experiments indicate that the system can enable “interactive debugging”— compiling multiple queries in a few seconds—while fitting rules comfortably in modern switch TCAMs and the automaton state into two bytes (e.g., a VLAN header).

Srinivas Narayana, Princeton University

Mina Tahmasbi, Princeton University

Jennifer Rexford, Princeton University

David Walker, Princeton University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Narayana PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us